已知函數(shù)
(1)設(shè)是函數(shù)的極值點(diǎn),求的值并討論的單調(diào)性;
(2)當(dāng)時,證明:

(1)函數(shù) 在上單調(diào)遞減,在上單調(diào)遞增.
(2)見解析.

解析試題分析:(1)根據(jù)的極值點(diǎn)得,可得導(dǎo)函數(shù)值為0,即,求得.進(jìn)一步討論導(dǎo)函數(shù)為正、負(fù)的區(qū)間,即得解;
(2)可以有兩種思路,一種是注意到當(dāng),時,
轉(zhuǎn)化成證明當(dāng)時,
研究函數(shù)當(dāng)時, 取得最小值且
證得,==
得證.
第二種思路是:當(dāng),時,,根據(jù),轉(zhuǎn)化成
構(gòu)造函數(shù),研究得到函數(shù)時取唯一的極小值即最小值為.達(dá)到證明目的.
試題解析:(1),由的極值點(diǎn)得,
,所以.                      2分
于是,
上單調(diào)遞增,且,
所以的唯一零點(diǎn).                    4分
因此,當(dāng)時,;當(dāng)時,,所以,函數(shù) 在上單調(diào)遞減,在上單調(diào)遞增.            6分
(2)解法一:當(dāng)時,
故只需證明當(dāng)時,.            8分
當(dāng)時,函數(shù)上單調(diào)遞增,

上有唯一實(shí)根,且.       10分
當(dāng)時,;當(dāng)時,
從而當(dāng)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè),函數(shù)
(1)若,求函數(shù)在區(qū)間上的最大值;
(2)若,寫出函數(shù)的單調(diào)區(qū)間(不必證明);
(3)若存在,使得關(guān)于的方程有三個不相等的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知a∈R,函數(shù)f(x)=4x3-2ax+a.
(1)求f(x)的單調(diào)區(qū)間;
(2)證明:當(dāng)0≤x≤1時,f(x)+|2-a|>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲、乙二人平時跑步路程與時間的關(guān)系以及百米賽跑路程和時間的關(guān)
系分別如圖①、②所示.問:
 
(1)甲、乙二人平時跑步哪一個跑得快?
(2)甲、乙二人百米賽跑,快到終點(diǎn)時,誰跑得快(設(shè)Δss的增量)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)f(x)=x3+2ax2bxag(x)=x2-3x+2,其中x
R,a,b為常數(shù),已知曲線yf(x)與yg(x)在點(diǎn)(2,0)處有相同的切線l.
ab的值,并求出切線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=在點(diǎn)(-1,f(-1))處的切線方程為x+y+3=0.
(1)求函數(shù)f(x)的解析式.
(2)設(shè)g(x)=lnx.求證:g(x)≥f(x)在[1,+∞)上恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=x3+x-16.
(1)求曲線y=f(x)在點(diǎn)(2,-6)處的切線方程.
(2)如果曲線y=f(x)的某一切線與直線y=-x+3垂直,求切點(diǎn)坐標(biāo)與切線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中,
(1)當(dāng)時,求曲線在點(diǎn)處的切線方程;
(2)討論的單調(diào)性;
(3)若有兩個極值點(diǎn),記過點(diǎn)的直線的斜率為,問是否存在,使得?若存在,求出的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求曲線yx3在點(diǎn)(3,27)處的切線與兩坐標(biāo)軸所圍成的三角形的面積.

查看答案和解析>>

同步練習(xí)冊答案