【題目】如圖所示,在四棱錐S—ABCD中,SA⊥平面ABCD,底面ABCD為直角梯形,其中AB∥CD,∠ADC=90°,AD=AS=2,AB=1,CD=3,點E在棱CS上,且CE=λCS.
(1)若,證明:BE⊥CD;
(2)若,求點E到平面SBD的距離.
【答案】(1)見解析;(2)點E到平面SBD的距離為.
【解析】
(1)在線段上取一點使,連接, 可得垂直.再證明垂直平面,所以垂直,又垂直.由此得垂直平面,從而可得結(jié)果;(2)先求得,再求得,設(shè)點到平面的距離為,則由得,從而可得結(jié)果.
(1)因為,所以,在線段CD上取一點F使,連接EF,BF,則EF∥SD且DF=1.
因為AB=1,AB∥CD,∠ADC=90°,
所以四邊形ABFD為矩形,所以CD⊥BF.
又SA⊥平面ABCD,∠ADC=90°,
所以SA⊥CD,AD⊥CD.
因為AD∩SA=A,所以CD⊥平面SAD,
所以CD⊥SD,從而CD⊥EF.
因為BF∩EF=F,所以CD⊥平面BEF.
又BE平面BEF,所以CD⊥BE.
(2)解:
由題設(shè)得,,
又因為,,,
所以,
設(shè)點C到平面SBD的距離為h,則由VS—BCD=VC—SBD得,
因為,所以點E到平面SBD的距離為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是中國古代第一部數(shù)學(xué)專著,成于公元一世紀(jì)左右,系統(tǒng)總結(jié)了戰(zhàn)國、秦、漢時期的數(shù)學(xué)成就.其中《方田》一章中記載了計算弧田(弧田就是由圓弧和其所對弦所圍成弓形)的面積所用的經(jīng)驗公式:弧田面積=(弦×矢+矢×矢),公式中“弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差.按照上述經(jīng)驗公式計算所得弧田面積與其實際面積之間存在誤差.現(xiàn)有圓心角為,弦長為的弧田.其實際面積與按照上述經(jīng)驗公式計算出弧田的面積之間的誤差為( )平方米.(其中,)
A. 15 B. 16 C. 17 D. 18
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,已知PC⊥BC,PC⊥AC,點E,F(xiàn),G分別是所在棱的中點,則下面結(jié)論中錯誤的是 ( )
A.平面EFG∥平面PBC
B.平面EFG⊥平面ABC
C.∠BPC是直線EF與直線PC所成的角
D.∠FEG是平面PAB與平面ABC所成二面角的平面角
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一扇形的圓心角為α,半徑為R,弧長為l.
(1)若α=60°,R=10 cm,求扇形的弧長l;
(2)已知扇形的周長為10 cm,面積是4 cm2,求扇形的圓心角;
(3)若扇形周長為20 cm,當(dāng)扇形的圓心角α為多少弧度時,這個扇形的面積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩焦點分別為,其短半軸長為.
(1)求橢圓的方程;
(2)設(shè)不經(jīng)過點的直線與橢圓相交于兩點.若直線與的斜率之和為,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體中,有下列結(jié)論:
①平面;
②異面直線AD與所成的角為;
③三棱柱的體積是三棱錐的體積的四倍;
④在四面體中,分別連接三組對棱的中點的線段互相垂直平分.
其中正確的是________(填出所有正確結(jié)論的序號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)用“五點法”畫函數(shù)在某一個周期內(nèi)的圖像時,列表并填入了部分?jǐn)?shù)據(jù),如下表:
0 | |||||
0 | 3 | 0 | 0 |
(1)請將上表數(shù)據(jù)補充完整,并寫出函數(shù)的解析式(直接寫出結(jié)果即可);
(2)根據(jù)表格中的數(shù)據(jù)作出在一個周期內(nèi)的圖像;
(3)求函數(shù)在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方體,為棱的中點,為棱的動點,設(shè)直線為平面與平面的交線,直線為平面與平面的交線,下列結(jié)論中錯誤的是( )
A.平面B.平面與平面不垂直
C.平面與平面可能平行D.直線與直線可能不平行
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com