(12分)(2011•福建)設(shè)函數(shù)f(θ)=,其中,角θ的頂點與坐標(biāo)原點重合,始邊與x軸非負(fù)半軸重合,終邊經(jīng)過點P(x,y),且0≤θ≤π.
(Ⅰ)若點P的坐標(biāo)為,求f(θ)的值;
(Ⅱ)若點P(x,y)為平面區(qū)域Ω:上的一個動點,試確定角θ的取值范圍,并求函數(shù)f(θ)的最小值和最大值.
(Ⅰ)2(Ⅱ)時,f(θ)取得最大值2;θ=0時,f(θ)取得最小值1

試題分析:(I)由已知中函數(shù)f(θ)=,我們將點P的坐標(biāo)代入函數(shù)解析式,即可求出結(jié)果.
(II)畫出滿足約束條件的平面區(qū)域,數(shù)形結(jié)合易判斷出θ角的取值范圍,結(jié)合正弦型函數(shù)的性質(zhì)我們即可求出函數(shù)f(θ)的最小值和最大值.
解(I)由點P的坐標(biāo)和三角函數(shù)的定義可得:

于是f(θ)===2
(II)作出平面區(qū)域Ω(即感觸區(qū)域ABC)如圖所示
其中A(1,0),B(1,1),C(0,1)
于是0≤θ≤
∴f(θ)==

故當(dāng),即時,f(θ)取得最大值2
當(dāng),即θ=0時,f(θ)取得最小值1

點評:本題主要考查三角函數(shù)、不等式等基礎(chǔ)知識,考查運算求解能力、推理論證能力,考查函數(shù)與方程思想、數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知定義域為的函數(shù)同時滿足以下三個條件:
(1) 對任意的,總有;(2);(3) 若,且,則有成立,則稱為“友誼函數(shù)”,請解答下列各題:
(1)若已知為“友誼函數(shù)”,求的值;
(2)函數(shù)在區(qū)間上是否為“友誼函數(shù)”?并給出理由.
(3)已知為“友誼函數(shù)”,假定存在,使得, 求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

經(jīng)過長期觀測得到:在交通繁忙的時段內(nèi),某公路段汽車的車流量(千輛/時)與汽車的平均速度(千米/時)之間的函數(shù)關(guān)系為).
(1)在該時段內(nèi),當(dāng)汽車的平均速度為多少時,車流量最大?最大車流量為多少?
(2)若要求在該時段內(nèi)車流量超過千輛/時,則汽車的平均速度應(yīng)在什么范圍內(nèi)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)a>0,函數(shù)f(x)=x+,g(x)=x-ln x,若對任意的x1,x2∈[1,e],都有f(x1)≥g(x2)成立,則實數(shù)a的取值范圍為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)函數(shù)f(x)滿足f(x)=1+flog2x,則f(2)=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

[2012·江蘇高考]已知函數(shù)f(x)=x2+ax+b(a,b∈R)的值域為[0,+∞),若關(guān)于x的不等式f(x)<c的解集為(m,m+6),則實數(shù)c的值為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)定義在上,對任意的,且.
(1)求,并證明:;
(2)若單調(diào),且.設(shè)向量,對任意,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知.
(1)當(dāng),時,若不等式恒成立,求的范圍;
(2)試判斷函數(shù)內(nèi)零點的個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,某機場建在一個海灣的半島上,飛機跑道AB的長為4.5km,且跑道所在的直線與海岸線l的夾角為60o(海岸線可以看作是直線),跑道上離海岸線距離最近的點B到海岸線的距離BC=4km.D為海灣一側(cè)海岸線CT上的一點,設(shè)CD=x(km),點D對跑道AB的視角為q.
(1)將tanq表示為x的函數(shù);
(2)求點D的位置,使q取得最大值.

查看答案和解析>>

同步練習(xí)冊答案