【題目】隨著經(jīng)濟(jì)模式的改變,微商和電商已成為當(dāng)今城鄉(xiāng)一種新型的購銷平臺.已知經(jīng)銷某種商品的電商在任何一個銷售季度內(nèi),每售出噸該商品可獲利潤萬元,未售出的商品,每噸虧損萬元.根據(jù)往年的銷售經(jīng)驗,得到一個銷售季度內(nèi)市場需求量的頻率分布直方圖如圖所示.已知電商為下一個銷售季度籌備了噸該商品.現(xiàn)以(單位:噸,)表示下一個銷售季度的市場需求量,(單位:萬元)表示該電商下一個銷售季度內(nèi)經(jīng)銷該商品獲得的利潤.

1)將表示為的函數(shù),求出該函數(shù)表達(dá)式;

2)根據(jù)直方圖估計利潤不少于57萬元的概率;

3)根據(jù)頻率分布直方圖,估計一個銷售季度內(nèi)市場需求量的平均數(shù)與中位數(shù)的大。ūA舻叫(shù)點后一位).

【答案】1;(20.7;(3)平均數(shù)為(噸),估計中位數(shù)應(yīng)為(噸)

【解析】

1)分別計算T的值,用分段函數(shù)表示T的解析式;
2)計算利潤T不少于57萬元時x的取值范圍,求出對應(yīng)的頻率值即可;
3)利用每一小組底邊的中點乘以對應(yīng)的矩形的面積(即頻率)求和得出平均數(shù),根據(jù)中位數(shù)兩邊頻率相等(即矩形面積和相等)求出中位數(shù)的大小.

解:(1)當(dāng)時,;

當(dāng)時,,

所以,;

2)根據(jù)頻率分布直方圖及(1)知,

當(dāng)時,由,得,

當(dāng)時,由

所以,利潤不少于57萬元當(dāng)且僅當(dāng),

于是由頻率分布直方圖可知市場需求量的頻率為

,

所以下一個銷售季度內(nèi)的利潤不少于57萬元的概率的估計值為0.7;

3)估計一個銷售季度內(nèi)市場需求量的平均數(shù)為

(噸)

由頻率分布直方圖易知,

由于時,對應(yīng)的頻率為,

時,對應(yīng)的頻率為,

因此一個銷售季度內(nèi)市場需求量的中位數(shù)應(yīng)屬于區(qū)間,于是估計中位數(shù)應(yīng)為(噸).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,為正三角形,,,,,為線段的中點.

1)求證:平面

2)求證:平面;

3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,且在區(qū)間上是增函數(shù).

1)求實數(shù)的值組成的集合;

2)設(shè)函數(shù)的兩個極值點為、,試問:是否存在實數(shù),使得不等式對任意恒成立?若存在,求的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC中,角AB,C的對邊分別為a,b,c,且2ccosB2a+b

1)求角C的大;

2)若ABC的面積等于,求ab的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的參數(shù)方程為:為參數(shù)),的參數(shù)方程為:為參數(shù)).

1)化的參數(shù)方程為普通方程,并說明它們分別表示什么曲線;

2)若直線的極坐標(biāo)方程為:,曲線上的點對應(yīng)的參數(shù),曲線上的點對應(yīng)的參數(shù),求的中點到直線的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】手機(jī)運動計步已成為一種時尚,某中學(xué)統(tǒng)計了該校教職工一天行走步數(shù)(單位:百步),繪制出如下頻率分布直方圖:

(Ⅰ)求直方圖中的值,并由頻率分布直方圖估計該校教職工一天步行數(shù)的中位數(shù);

(Ⅱ)若該校有教職工175人,試估計一天行走步數(shù)不大于130百步的人數(shù);

(Ⅲ)在(Ⅱ)的條件下該校從行走步數(shù)大于150百步的3組教職工中用分層抽樣的方法選取6人參加遠(yuǎn)足活動,再從6人中選取2人擔(dān)任領(lǐng)隊,求這兩人均來自區(qū)間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,ABCD為菱形,平面ABCD,連接ACBD交于點O,,E是棱PC上的動點,連接DE.

1)求證:平面平面;

2)當(dāng)面積的最小值是4時,求此時點E到底面ABCD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對某兩名高三學(xué)生在連續(xù)9次數(shù)學(xué)測試中的成績(單位:分)進(jìn)行統(tǒng)計得到折線圖,下面是關(guān)于這兩位同學(xué)的數(shù)學(xué)成績分析.

①甲同學(xué)的成績折線圖具有較好的對稱性,故平均成績?yōu)?30分;

②根據(jù)甲同學(xué)成績折線圖提供的數(shù)據(jù)進(jìn)行統(tǒng)計,估計該同學(xué)平均成績在區(qū)間內(nèi);

③乙同學(xué)的數(shù)學(xué)成績與測試次號具有比較明顯的線性相關(guān)性,且為正相關(guān);

④乙同學(xué)連續(xù)九次測驗成績每一次均有明顯進(jìn)步.

其中正確的個數(shù)為(  )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了政府對過熱的房地產(chǎn)市場進(jìn)行調(diào)控決策,統(tǒng)計部門對城市人和農(nóng)村人進(jìn)行了買房的心理預(yù)期調(diào)研,用簡單隨機(jī)抽樣的方法抽取110人進(jìn)行統(tǒng)計,得到如下列聯(lián)表:

買房

不買房

糾結(jié)

城市人

5

15

農(nóng)村人

20

10

已知樣本中城市人數(shù)與農(nóng)村人數(shù)之比是3:8.

分別求樣本中城市人中的不買房人數(shù)和農(nóng)村人中的糾結(jié)人數(shù);

用獨立性檢驗的思想方法說明在這三種買房的心理預(yù)期中哪一種與城鄉(xiāng)有關(guān)?

參考公式:

k

查看答案和解析>>

同步練習(xí)冊答案