【題目】已知圓經(jīng)過點(diǎn),,且圓心在直線上.
(1)求圓的方程;
(2)過點(diǎn)的直線截圓所得弦長為,求直線的方程.
(3)若直線與圓相切,且與,軸的正半軸分別相交于,兩點(diǎn),求的面積最小時(shí)直線的方程.
【答案】(1)(2)或(3)
【解析】
(1)由題意,可得的垂直平分線方程為,聯(lián)立方程組求得圓心,進(jìn)而求得圓的方程;
(2)當(dāng)直線的斜率存在時(shí),設(shè)斜率為,得到直線方程,利用圓心到直線的距離和圓的垂徑定理,求得,得出直線的方程;當(dāng)直線的斜率不存在時(shí),驗(yàn)證直線的方程為,滿足題意,即可得到結(jié)論;
(3)設(shè)直線l的方程為,根據(jù)與圓相切,利用三角形的面積,結(jié)合基本不等式,求得的值,即可得到答案.
(1)由題意,可得的中點(diǎn)坐標(biāo)為,,直線的斜率為,
可得的垂直平分線方程為,
聯(lián)立方程組,解答,即圓心坐標(biāo)為,
所以半徑為 ,所以圓的方程為.
(2)當(dāng)直線的斜率存在時(shí),設(shè)斜率為,
因?yàn)橹本過點(diǎn),所以直線的方程為,即,
則圓心到直線的距離,
由垂徑定理,,解得,
則直線的方程為,
當(dāng)直線的斜率不存在時(shí),直線的方程為,滿足題意,
所以直線的方程為或.
(3)設(shè)直線l的方程為:,
因?yàn)?/span>與軸的正半軸分別相交于兩點(diǎn),
所以,且,
又與圓相切,則點(diǎn)到直線的距離等于圓的半徑2,
即,①,
又由 ②
將①代入②得,
當(dāng)且僅當(dāng)時(shí)取等號(hào),所以當(dāng)時(shí),的面積最小,
此時(shí),
所以直線的方程為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分13分)
某食品廠進(jìn)行蘑菇的深加工,每公斤蘑菇的成本20元,并且每公斤蘑菇的加工費(fèi)為元(為常數(shù),且,設(shè)該食品廠每公斤蘑菇的出廠價(jià)為元(),根據(jù)市場(chǎng)調(diào)查,銷售量與成反比,當(dāng)每公斤蘑菇的出廠價(jià)為30元時(shí),日銷售量為100公斤.
(Ⅰ)求該工廠的每日利潤元與每公斤蘑菇的出廠價(jià)元的函數(shù)關(guān)系式;
(Ⅱ)若,當(dāng)每公斤蘑菇的出廠價(jià)為多少元時(shí),該工廠的利潤最大,并求最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
(1)若函數(shù)在上遞增,在上遞減,求實(shí)數(shù)的值.
(2))討論在上的單調(diào)性;
(3)若方程有兩個(gè)不等實(shí)數(shù)根,求實(shí)數(shù)的取值范圍,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=x2+bln(x+1),其中b≠0.
(1)若b=﹣12,求f(x)在[1,3]的最小值;
(2)如果f(x)在定義域內(nèi)既有極大值又有極小值,求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)某產(chǎn)品1至6月份銷售量及其價(jià)格進(jìn)行調(diào)查,其售價(jià)x和銷售量y之間的一組數(shù)據(jù)如下表所示:
月份i | 1 | 2 | 3 | 4 | 5 | 6 |
單價(jià)(元) | 9 | 9.5 | 10 | 10.5 | 11 | 8 |
銷售量(件) | 11 | 10 | 8 | 6 | 5 | 14 |
(1)根據(jù)1至5月份的數(shù)據(jù),求出y關(guān)于x的回歸直線方程;
(2)若由回歸直線方程得到的估計(jì)數(shù)據(jù)與剩下的檢驗(yàn)數(shù)據(jù)的誤差不超過0.5元,則認(rèn)為所得到的回歸直線方程是理想的,試問所得回歸直線方程是否理想?
(3)預(yù)計(jì)在今后的銷售中,銷售量與單價(jià)仍然服從(1)中的關(guān)系,且該產(chǎn)品的成本是2.5元/件,為獲得最大利潤,該產(chǎn)品的單價(jià)應(yīng)定為多少元?(利潤=銷售收入-成本).
參考公式:回歸方程,其中.
參考數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合,,分別從集合和中隨機(jī)取一個(gè)元素與.記“點(diǎn)落在直線上”為事件,若事件的概率最大,則的取值可能是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一間宿舍內(nèi)住有甲乙兩人,為了保持宿舍內(nèi)的干凈整潔,他們每天通過小游戲的方式選出一人值日打掃衛(wèi)生,游戲規(guī)則如下:第1天由甲值日,隨后每天由前一天值日的人拋擲兩枚正方體骰子(點(diǎn)數(shù)為),若得到兩枚骰子的點(diǎn)數(shù)之和小于10,則前一天值日的人繼續(xù)值日,否則當(dāng)天換另一人值日.從第2天開始,設(shè)“當(dāng)天值日的人與前一天相同”為事件.
(1)求.
(2)設(shè)表示“第天甲值日”的概率,則,其中,.
(ⅰ)求關(guān)于的表達(dá)式.
(ⅱ)這種游戲規(guī)則公平嗎?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高鐵、網(wǎng)購、移動(dòng)支付和共享單車被譽(yù)為中國的“新四大發(fā)明”,彰顯出中國式創(chuàng)新的強(qiáng)勁活力.某移動(dòng)支付公司從我市移動(dòng)支付用戶中隨機(jī)抽取100名進(jìn)行調(diào)查,得到如下數(shù)據(jù):
每周移動(dòng)支付次數(shù) | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 | 總計(jì) |
男 | 10 | 8 | 7 | 3 | 2 | 15 | 45 |
女 | 5 | 4 | 6 | 4 | 6 | 30 | 55 |
總計(jì) | 15 | 12 | 13 | 7 | 8 | 45 | 100 |
(1)把每周使用移動(dòng)支付超過3次的用戶稱為“移動(dòng)支付活躍用戶”,能否在犯錯(cuò)誤概率不超過0.005的前提下,認(rèn)為是否為“移動(dòng)支付活躍用戶”與性別有關(guān)?
(2)把每周使用移動(dòng)支付6次及6次以上的用戶稱為“移動(dòng)支付達(dá)人”,視頻率為概率,在我市所有“移動(dòng)支付達(dá)人”中,隨機(jī)抽取4名用戶.
①求抽取的4名用戶中,既有男“移動(dòng)支付達(dá)人”又有女“移動(dòng)支付達(dá)人”的概率;
②為了鼓勵(lì)男性用戶使用移動(dòng)支付,對(duì)抽出的男“移動(dòng)支付達(dá)人”每人獎(jiǎng)勵(lì)300元,記獎(jiǎng)勵(lì)總金額為X,求X的分布列及均值.
附公式及表如下:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.076 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com