9.若點O和點$F(-\sqrt{3},0)$分別是雙曲線$\frac{x^2}{a^2}-{y^2}={1_{\;}}$(a>0)的對稱中心和左焦點,點P為雙曲線右支上任意一點,則$\frac{{{{|{PF}|}^2}}}{{{{|{OP}|}^2}+1}}$的取值范圍為(1,(1,$\frac{5+2\sqrt{6}}{3}$].

分析 根據(jù)雙曲線的焦點坐標,求出a的值,設P(x,y),利用距離公式進行轉(zhuǎn)化求解即可.

解答 解:∵點O和點$F(-\sqrt{3},0)$分別是雙曲線$\frac{x^2}{a^2}-{y^2}={1_{\;}}$(a>0)的對稱中心和左焦點,
∴c=$\sqrt{3}$,則c2=a2+1=3,則a2=2,
即雙曲線方程為$\frac{1}{2}$x2-y2=1,
設P(x,y),則x≥$\sqrt{2}$,
則$\frac{{{{|{PF}|}^2}}}{{{{|{OP}|}^2}+1}}$=$\frac{(x+\sqrt{3})^{2}+{y}^{2}}{{x}^{2}+{y}^{2}+1}$=1+$\frac{4}{3}$($\frac{\sqrt{3}}{x}$+$\frac{1}{{x}^{2}}$)=$\frac{4}{3}(\frac{1}{x}+\frac{\sqrt{3}}{2})^{2}$,
∵x≥$\sqrt{2}$,∴$\frac{1}{x}$=$\frac{\sqrt{2}}{2}$時,取得最大值為$\frac{5+2\sqrt{6}}{3}$,
故$\frac{{{{|{PF}|}^2}}}{{{{|{OP}|}^2}+1}}$的取值范圍為(1,$\frac{5+2\sqrt{6}}{3}$],
故答案為(1,$\frac{5+2\sqrt{6}}{3}$].

點評 本題主要考查雙曲線的性質(zhì)的應用,利用距離公式,轉(zhuǎn)化為一元二次函數(shù)形式是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

19.函數(shù)$f(x)={log_{\frac{1}{4}}}({x^2}-5x+6)$的遞增區(qū)間是(-∞,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知y2=16x,A(1,2),P為拋物線上的點,F(xiàn)為拋物線焦點,則|PF|+|PA|的最小值為( 。
A.1B.4C.5D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知集合A={-2,-1,3,4},B={-1,2,3},則A∩B=(  )
A.φB.{-1,3}C.{-1,2}D.{-1,3,4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=x2-x+k,且log2f(a)=2,f(log2a)=k,a>0,且a≠1
(1)求a,k的值;
(2)當x為何值時,f(logax)有最小值?求出該最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.近年來我國電子商務行業(yè)迎來發(fā)展的新機遇.2016年雙十一期間,某購物平臺的銷售業(yè)績高達516億人民幣.與此同時,相關(guān)管理部門推出了針對電商的商品和服務的評價體系.現(xiàn)從評價系統(tǒng)中選出200次成功交易,并對其評價進行統(tǒng)計,對商品的好評率為0.6,對服務的好評率為0.75,其中對商品和服務都做出好評的交易為80次.
(Ⅰ)先完成關(guān)于商品和服務評價的2×2列聯(lián)表,再判斷能否在犯錯誤的概率不超過0.001的前提下,認為商品好評與服務好評有關(guān)?
(Ⅱ)若用分層抽樣的方法從“對商品好評“和“對商品不滿意“中抽出5次交易,再從這5次交易中選出2次.求恰有一次為”商品好評”的概率.
附臨界值表:
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
 k 2.072 2.706 3.841 5.024 6.635 7.897 10.828
K2的觀測值:$k=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d)
關(guān)于商品和服務評價的2×2列聯(lián)表:
對服務好評對服務不滿意合計
對商品好評a=80b=40120
對商品不滿意c=70d=1080
合計15050n=200

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知四棱錐P-ABCD的三視圖如圖,則四棱錐P-ABCD的表面積和體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知拋物線C:y2=2px(p>0)的焦點F(1,0),則p=2;M是拋物線上的動點,A(6,4),則|MA|+|MF|的最小值為7.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.若α,β∈[-$\frac{π}{2}$,$\frac{π}{2}$],且αsinα-βsinβ>0,則下列關(guān)系式:①α>β;②α<β;③α+β>0;④α2>β2;⑤α2≤β2
其中正確的序號是:④.

查看答案和解析>>

同步練習冊答案