【題目】如圖,在四棱錐中,是邊長為4的正三角形,且,,,,M為AB中點.
(Ⅰ)證明:平面ADE;
(Ⅱ)求直線CA與平面BCDE所成角的正弦值.
【答案】(Ⅰ)見解析(Ⅱ)
【解析】
(Ⅰ)取AE的中點F,連接MF、FD,只需證明四邊形MFDC為平行四邊形,因為點M為AB的中點,所以,且,則易證.
(Ⅱ)先證明平面ADE,作于,再證明平面CDEB,所以為直線CA與平面BCDE所成的角,利用,求出,則直線CA與平面BCDE所成角的正弦值可求.
(Ⅰ)證明:
取AE的中點F,連接MF,FD,
因為點M為AB的中點,
所以,且,
又因為且,
所以,,
所以四邊形MFDC為平行四邊形,所以,
又因為平面ADE,平面ADE,
所以平面ADE.
(Ⅱ)解:因為,,,
所以,所以,
又,,
所以平面ADE,
又平面CDEB,
所以平面平面CDEB,
作于,因為平面平面,
所以平面CDEB,連接CH,
所以為直線CA與平面BCDE所成的角.
因為平面ADE,所以,
在直角梯形BCDE中,作于,則四邊形為矩形,
則,,
因為,所以,
在直角三角形ACD中,,
又,
在中,
所以
所以,
所以,
所以直線CA與平面BCDE所成角的正弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】在我國瓷器的歷史上六棱形的瓷器非常常見,因為六,八是中國人的吉利數(shù)字,所以好多器都做成六棱形和八棱形,數(shù)學李老師有一個正六棱柱形狀的筆筒,底面邊長為6cm,高為18cm(底部及筒壁厚度忽略不計),一長度為cm的圓鐵棒l(粗細忽略不計)斜放在筆筒內(nèi)部,l的一端置于正六柱某一側(cè)棱的展端,另一端置于和該側(cè)棱正對的側(cè)棱上.一位小朋友玩耍時,向筆筒內(nèi)注水,恰好將圓鐵棒淹沒,又將一個圓球放在筆筒口,球面又恰好接觸水面,則球的表面積為_____cm2.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知長方形ABCD中,AB=1,∠ABD=60°,現(xiàn)將長方形ABCD沿著對角線BD折起,使平面ABD⊥平面BCD,則折后幾何圖形的外接球表面積為_____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學舉行的“新冠肺炎”防控知識閉卷考試比賽,總分獲得一等獎、二等獎、三等獎的代表隊人數(shù)情況如下表,該校政教處為使頒獎儀式有序進行,氣氛活躍,在頒獎過程中穿插抽獎活動,并用分層抽樣的方法從三個代表隊中共抽取16人在前排就坐,其中一等獎代表隊有6人.
(1)求二等獎代表隊的男生人數(shù);
(2)從前排就坐的三等獎代表隊員5人(2男3女)中隨機抽取3人上臺領獎,請求出只有一個男生上臺領獎的概率;
(3)抽獎活動中,代表隊員通過操作按鍵,使電腦自動產(chǎn)生[2,2]內(nèi)的兩個均勻隨機數(shù)x,y,隨后電腦自動運行如圖所示的程序框圖的相應程序,若電腦顯示“中獎”,則代表隊員獲相應獎品;若電腦顯示“謝謝”,則不中獎,求代表隊隊員獲得獎品的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,四邊形ABCD為等腰梯形,AB=4,AD=DC=CB=2,△ADC沿AC折起,使得平面ADC⊥平面ABC,E為AB的中點,連接DE,DB(如圖2).
(1)求證:BC⊥AD
(2)求直線DE與平面BCD所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】受突如其來的新冠疫情的影響,全國各地學校都推遲2020年的春季開學.某學!巴Un不停學”,利用云課平臺提供免費線上課程.該學校為了解學生對線上課程的滿意程度,隨機抽取了500名學生對該線上課程評分.其頻率分布直方圖如下:若根據(jù)頻率分布直方圖得到的評分低于80分的概率估計值為0.45.
(1)(i)求直方圖中的a,b值;
(ii)若評分的平均值和眾數(shù)均不低于80分視為滿意,判斷該校學生對線上課程是否滿意?并說明理由(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表);
(2)若采用分層抽樣的方法,從樣本評分在[60,70)和[90,100]內(nèi)的學生中共抽取5人進行測試來檢驗他們的網(wǎng)課學習效果,再從中選取2人進行跟蹤分析,求這2人中至少一人評分在[60,70)內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“珠算之父”程大位是我國明代著名的數(shù)學家,他的應用巨著《算法統(tǒng)綜》中有一首“竹筒容米”問題:“家有九節(jié)竹一莖,為因盛米不均平,下頭三節(jié)四升五,上梢四節(jié)三升八,唯有中間兩節(jié)竹,要將米數(shù)次第盛,若有先生能算法,也教算得到天明.”((注)四升五:4.5升,次第盛:盛米容積依次相差同一數(shù)量.)用你所學的數(shù)學知識求得中間兩節(jié)竹的容積為
A. 2.2升B. 2.3升
C. 2.4升D. 2.5升
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P—ABCD中,底面ABCD為矩形,平面PAD⊥平面ABCD,PAPD,E,F分別為AD,PB的中點.求證:
(1)EF//平面PCD;
(2)平面PAB平面PCD.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司A產(chǎn)品生產(chǎn)的投入成本x(單位:萬元)與產(chǎn)品銷售收入y(單位:十萬元)存在較好的線性關系,下表記錄了該公司最近8次該產(chǎn)品的相關數(shù)據(jù),且根據(jù)這8組數(shù)據(jù)計算得到y關于x的線性回歸方程為.
x(萬元) | 6 | 7 | 8 | 11 | 12 | 14 | 17 | 21 |
y(十萬元) | 1.2 | 1.5 | 1.7 | 2 | 2.2 | 2.4 | 2.6 | 2.9 |
(1)求的值(結果精確到0.0001),并估計公司A產(chǎn)品投入成本30萬元后產(chǎn)品的銷售收入(單位:十萬元).
(2)該公司B產(chǎn)品生產(chǎn)的投入成本u(單位:萬元)與產(chǎn)品銷售收入v(單位:十萬元)也存在較好的線性關系,且v關于u的線性回歸方程為.
(i)估計該公司B產(chǎn)品投入成本30萬元后的毛利率(毛利率);
(ii)判斷該公司A,B兩個產(chǎn)品都投入成本30萬元后,哪個產(chǎn)品的毛利率更大.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com