如圖, 是邊長為的正方形,平面,,,與平面所成角為.
(Ⅰ)求證:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)線段上是否存在點,使得平面?若存在,試確定點的位置;若不存在,說明理由。
(Ⅰ) 只需證 , 。(Ⅱ);(Ⅲ)存在點M,。
【解析】
試題分析:(Ⅰ)證明: 因為平面,
所以. 2分
因為是正方形,
所以,
又相交
從而平面. 4分
(Ⅱ)解:因為兩兩垂直,
所以建立空間直角坐標系如圖所示.
因為與平面所成角為,
即, 5分
所以.
由可知,. 6分
則,,,,,
所以,, 7分
設平面的法向量為,則,
即,令,
則. 8分
因為平面,所以為平面的法向量,,
所以. 9分
因為二面角為銳角,所以二面角的余弦值為. 10分
(Ⅲ)解:點是線段上一個點,設.
則,
因為平面,
所以, 11分
即,解得. 12分
此時,點坐標為,故存在點M,,符合題意. 13分
考點:線面垂直的性質(zhì)定理;線面垂直的判定定理;二面角;線面平行的判定定理。
點評:線面垂直的常用方法:
①線線垂直Þ線面垂直
若一條直線垂直平面內(nèi)兩條相交直線,則這條直線垂直這個平面。
即
②面面垂直Þ線面垂直
兩平面垂直,其中一個平面內(nèi)的一條直線垂直于它們的交線,則這條直線垂直于另一個平面。
即
③兩平面平行,有一條直線垂直于垂直于其中一個平面,則這條直線垂直于另一個平面。
即
④兩直線平行,其中一條直線垂直于這個平面,則另一條直線也垂直于這個平面。
即
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
AP |
AB |
AF |
A、(1,2] |
B、[5,6] |
C、[2,5] |
D、[3,5] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
如圖,把邊長為的正六邊形紙板剪去相同的六個角,做成一個底面為正六邊形的無蓋六棱柱盒子,設高為,所做成的盒子體積為(不計接縫)。
(1)寫出體積與高的函數(shù)關系式;(2)當為多少時,體積最大,最大值是多少?
查看答案和解析>>
科目:高中數(shù)學 來源:江蘇省蘇北四市2010屆高三第三次模擬考試 題型:解答題
A.選修4-1(幾何證明選講)
如圖,是邊長為的正方形,以為圓心,為半徑的圓弧與以為直徑的交于點,延長交于.(1)求證:是的中點;(2)求線段的長.
B.選修4-2(矩陣與變換)
已知矩陣,若矩陣屬于特征值3的一個特征向量為,屬于特征值-1的一個特征向量為,求矩陣.
C.選修4-4(坐標系與參數(shù)方程)
在極坐標系中,曲線的極坐標方程為,以極點為原點,極軸為軸的正半軸建立平面直角坐標系,直線的參數(shù)方程為(為參數(shù)),求直線被曲線所截得的弦長.
D.選修4—5(不等式選講)
已知實數(shù)滿足,求的最小值;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com