如圖所示,在四棱錐P-ABCD中,底面ABCD是菱形,∠BAD=60°AB=PA=2,PA⊥平面ABCD,E是PC的中點(diǎn),F(xiàn)是AB的中點(diǎn).
(1)求證:BE平面PDF;
(2)求證:平面PDF⊥平面PAB;
(3)求BE與平面PAC所成的角.
(1)證明:取PD的中點(diǎn)為M,連接ME,MF,
∵E是PC的中點(diǎn),∴ME是△PCD的中位線.
∴MECD,ME=
1
2
CD.
又∵F是AB的中點(diǎn),且由于ABCD是菱形,
∴ABCD,AB=CD,∴MEFB,且ME=FB.
∴四邊形MEBF是平行四邊形,∴BEMF.
∵BE?平面PDF,MF?平面PDF,
∴BE平面PDF.
(2)證明:∵PA⊥平面ABCD,DF?平面ABCD,
∴DF⊥PA.連接BD,
∵底面ABCD是菱形,∠BAD=60°,∴△DAB為正三角形.
∵F是AB的中點(diǎn),∴DF⊥AB.
∵PA∩AB=A,∴DF⊥平面PAB.
∵DF?平面PDF,∴平面PDF⊥平面PAB.
(3)連結(jié)BD交AC于O,∵底面ABCD是菱形,∴AC⊥BD,
∵PA⊥平面ABCD,∴PA⊥BD,∴BD⊥平面PAC.
∴OB⊥OE,即OE是BE在平面PAC上的射影.
∴∠BEO是BE與平面PAC所成的角.
∵O,E,分別是中點(diǎn),∴OE=
1
2
AP=1,OD=
1
2
BD
=
1
2
AB
=1,
∴Rt△BOE為等腰直角三角形,∴∠BEO=45°,
即BE與平面PAC所成的角的大小為45°.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐V-ABCD中底面ABCD是正方形,側(cè)面VAD是正三角形,平面VAD⊥底面ABCD
(1)證明:AB⊥平面VAD;
(2)求面VAD與面VDB所成的二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,BC是Rt△ABC的斜邊,AP⊥平面ABC,連接PB、PC,作PD⊥BC于D,連接AD,則圖中共有直角三角形______個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1,M、N分別是A1B、B1C1的中點(diǎn).
(Ⅰ)求證:MN⊥平面A1BC;
(Ⅱ)求直線BC1和平面A1BC所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐S-ABCD中,底面ABCD是正方形,四個(gè)側(cè)面都是等邊三角形,AC與BD的交點(diǎn)為O,E為側(cè)棱SC上一點(diǎn).
(1)當(dāng)E為側(cè)棱SC的中點(diǎn)時(shí),求證:SA平面BDE;
(2)求證:平面BED⊥平面SAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在正三棱柱ABC-A1B1C1(底面三角形ABC是正三角形的直棱柱)中,點(diǎn)D,E分別是BC,B1C1的中點(diǎn),BC1∩B1D=F,BC=
2
BB1
.求證:
(1)平面A1EC平面AB1D;
(2)平面A1BC1⊥平面AB1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知正三棱柱ABC-A1B1C1,D為棱CC1上任意一點(diǎn),E為BC中點(diǎn),F(xiàn)為B1C1的中點(diǎn),證明:
(1)A1F平面ADE;
(2)平面ADE⊥平面BCC1B1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直三棱柱ABC-A1B1C1中,AC=BC,點(diǎn)D為AB的中點(diǎn).
(1)求證:AC1平面CDB1;
(2)求證:平面CDB1⊥平面ABB1A1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在空間直角坐標(biāo)系Oxyz中,點(diǎn)P(-2,0,3)位于( 。
A.xoz平面內(nèi)B.yoz平面內(nèi)C.y軸上D.z軸上

查看答案和解析>>

同步練習(xí)冊(cè)答案