如圖,在四棱錐S-ABCD中,底面ABCD是正方形,四個(gè)側(cè)面都是等邊三角形,AC與BD的交點(diǎn)為O,E為側(cè)棱SC上一點(diǎn).
(1)當(dāng)E為側(cè)棱SC的中點(diǎn)時(shí),求證:SA平面BDE;
(2)求證:平面BED⊥平面SAC.
(本小題滿分12分)
證明:(1)連接OE,當(dāng)E為側(cè)棱SC的中點(diǎn)時(shí),OE為△SAC的中位線,
所以SAOE,(3分)
因?yàn)镾A?平面BDE,OE?平面BDE,
所以SA平面BDE.(5分)
(2)因?yàn)镾B=SD,O是BD中點(diǎn),
所以BD⊥SO,(7分)
又因?yàn)樗倪呅蜛BCD是正方形,所以BD⊥AC,(9分)
因?yàn)锳C∩SO=O,所以BD⊥平面SAC.(11分)
又因?yàn)锽D?平面BDE,
所以平面BDE⊥平面SAC.(12分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,AA1=AD=a,AB=2a,E、F分別為C1D1、A1D1的中點(diǎn).
(Ⅰ)求證:DE⊥平面BCE;
(Ⅱ)求證:AF平面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,正方形ABCD和矩形ACEF所在的平面相互垂直,已知AB=2,AF=
2

(I)求證:EO⊥平面BDF;
(II)求二面角A-DF-B的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐S?ABCD中,底面ABCD是正方形,SA⊥面ABCD,且SA=AB,M、N分別為SB、SD中點(diǎn),求證:
(1)DB平面AMN.
(2)SC⊥平面AMN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形ABCD為矩形,AD⊥平面ABEAE=EB=BC=2,F(xiàn)為CE上的點(diǎn),且BF⊥平面ACE,BD∩AC=G.
(1)求證:AE⊥平面BCE;
(2)求證:AE平面BFD;
(3)求四面體BCDF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在四棱錐P-ABCD中,底面ABCD是菱形,∠BAD=60°AB=PA=2,PA⊥平面ABCD,E是PC的中點(diǎn),F(xiàn)是AB的中點(diǎn).
(1)求證:BE平面PDF;
(2)求證:平面PDF⊥平面PAB;
(3)求BE與平面PAC所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直三棱柱ABC-A1B1C1中,AB=AC=2AA1=2,sin∠ABC=
3
2
,D是BC的中點(diǎn).
(1)求證:A1B平面AC1D;
(2)求證:平面AC1D⊥平面B1BCC1;
(3)求三棱錐B-AC1D的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB,CD均為圓O的直徑,CE⊥圓O所在的平面,BFCE.求證:
(1)平面BCEF⊥平面ACE;
(2)直線DF平面ACE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知點(diǎn)(1,2,3),則該點(diǎn)關(guān)于x軸的對(duì)稱點(diǎn)的坐標(biāo)為______.

查看答案和解析>>

同步練習(xí)冊(cè)答案