【題目】已知函數(shù)f (x)=xlnx-x.
(1)設(shè)g(x)=f (x)+|x-a|,a∈R.e為自然對數(shù)的底數(shù).
①當(dāng)時,判斷函數(shù)g(x)零點(diǎn)的個數(shù);
②時,求函數(shù)g(x)的最小值.
(2)設(shè)0<m<n<1,求證:
【答案】(1)① g(x)有且僅有兩個零點(diǎn).②a-e.(2)證明見解析
【解析】
(1)將代入g(x)=f (x)+|x-a|,化簡得g(x)=xlnx+,再根據(jù)導(dǎo)數(shù)正負(fù)判斷在極值點(diǎn)處函數(shù)值的正負(fù),結(jié)合極值點(diǎn)兩側(cè)值加以論證即可,可取驗證求解
(2)由于參數(shù)的不確定性,需根據(jù)將參數(shù)分成a≤,a≥e,<a<e三段進(jìn)行討論,進(jìn)一步判斷函數(shù)的單調(diào)區(qū)間
(3)可先構(gòu)造函數(shù)h(x)=,求得h′(x)=>0,于是h(x)在(0,1)單調(diào)遞增,因0<m<n<1,所以h(m)<h(n),從而有,再設(shè)φ(x)=,x>0 ,通過導(dǎo)數(shù)來驗證φ(x)增減性,進(jìn)一步通過增減性求得最值,即可求證不等式成立
解:(1)①當(dāng)時, g(x)=xlnx-x+|x+|=xlnx+,
g′(x)=1+lnx,
當(dāng)0<x<時,g′(x)<0;當(dāng)x>時,g′(x)>0;
因此g(x)在(0,)上單調(diào)遞減,在(,+∞)上單調(diào)遞增,
又,g()=-+<0,g(1)=>0,
所以g(x)有且僅有兩個零點(diǎn).
②(i)當(dāng)a≤時,g (x)=xlnx-x+x-a=xlnx-a,
因為x∈[,e],g′(x)=1+lnx≥0恒成立,
所以g(x)在[,e]上單調(diào)遞增,所以此時g(x)的最小值為g()=--a.
(ii)當(dāng)a≥e時,g(x)=xlnx-x+a-x=xlnx-2x+a,
因為x∈[,e],g′(x)=lnx-1≤0恒成立,
所以g(x)在[,e]上單調(diào)遞減,所以此時g(x)的最小值為g(e)=a-e.
(iii)當(dāng)<a<e時,
若≤x≤a,則g(x)=xlnx-x+a-x=xlnx-2x+a,
若a≤x≤e,則g(x)=xlnx-x+x-a=xlnx-a,
由(i),(ii)知g(x)在[,a]上單調(diào)遞減,在[a,e]上單調(diào)遞增,
所以此時g(x)的最小值為g(a)=alna-a,
綜上有:當(dāng)a≤時,g(x)的最小值為--a;
當(dāng)<a<e時,g(x)的最小值為alna-a;
當(dāng)a≥e時,g(x)的最小值為a-e.
(2)設(shè)h(x)=,
則當(dāng)x∈(0,1)時,h′(x)=>0,于是h(x)在(0,1)單調(diào)遞增,
又0<m<n<1,所以h(m)<h(n),
從而有
設(shè)φ(x)=,x>0
則φ′(x)=
因此φ(x)在(0,+∞)上單調(diào)遞增,
因為0<n<1,所以φ(n)<φ(1)=0,即lnn-1+<0,
因此
即原不等式得證.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某餐廳通過查閱了最近5次食品交易會參會人數(shù) (萬人)與餐廳所用原材料數(shù)量 (袋),得到如下統(tǒng)計表:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
參會人數(shù) (萬人) | 13 | 9 | 8 | 10 | 12 |
原材料 (袋) | 32 | 23 | 18 | 24 | 28 |
(1)根據(jù)所給5組數(shù)據(jù),求出關(guān)于的線性回歸方程.
(2)已知購買原材料的費(fèi)用 (元)與數(shù)量 (袋)的關(guān)系為,
投入使用的每袋原材料相應(yīng)的銷售收入為700元,多余的原材料只能無償返還,據(jù)悉本次交易大會大約有15萬人參加,根據(jù)(1)中求出的線性回歸方程,預(yù)測餐廳應(yīng)購買多少袋原材料,才能獲得最大利潤,最大利潤是多少?(注:利潤銷售收入原材料費(fèi)用).
參考公式: , .
參考數(shù)據(jù): , , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗(噸標(biāo)準(zhǔn)煤)的幾組對照數(shù)據(jù)
3 | 4 | 5 | 6 | |
2.5 | 3 | 4 | 4.5 |
()
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(2)已知該廠技術(shù)改造前100噸甲產(chǎn)品能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)(1)求出的線性回歸方程,預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技術(shù)改造前降低多少噸標(biāo)準(zhǔn)煤?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為的正半軸建立平面直角坐標(biāo)系.
(1)求和的參數(shù)方程;
(2)已知射線,將逆時針旋轉(zhuǎn)得到,且與交于兩點(diǎn), 與交于兩點(diǎn),求取得最大值時點(diǎn)的極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù)的圖象與軸相切.
(1)求實(shí)數(shù)a的值;
(2)求的單調(diào)區(qū)間;
(3)當(dāng)時,恒有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐PABCD中,底面ABCD是矩形,PA⊥平面ABCD,AD=1,PA=AB= ,點(diǎn)E是棱PB的中點(diǎn).
(1)求異面直線EC與PD所成角的余弦值;
(2)求二面角B-EC-D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某醫(yī)院擬派2名內(nèi)科醫(yī)生、3名外科醫(yī)生和3名護(hù)士共8人組成兩個醫(yī)療分隊,平均分到甲、乙兩個村進(jìn)行義務(wù)巡診,其中每個分隊都必須有內(nèi)科醫(yī)生、外科醫(yī)生和護(hù)士,則不同的分配方案有
A. 72種 B. 36種 C. 24種 D. 18種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,,分別是橢圓的左、右焦點(diǎn),直線過點(diǎn)與橢圓交于、兩點(diǎn),且的周長為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)是否存在直線使的面積為?若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù),),曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線的極坐標(biāo)方程;
(2)設(shè)曲線與曲線的交點(diǎn)分別為,求的最大值及此時直線的傾斜角.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com