(本小題滿分14分)已知橢圓
:
的離心率為
,過坐標(biāo)原點(diǎn)
且斜率為
的直線
與
相交于
、
,
.
⑴求
、
的值;
⑵若動(dòng)圓
與橢圓
和直線
都沒有公共點(diǎn),試求
的取值范圍.
⑴依題意,
:
……1分,不妨設(shè)
、
(
)…2分,
由
得
,
……3分,所以
……5分,
解得
,
……6分.
⑵由
消去
得
……7分,動(dòng)圓與橢圓沒有公共點(diǎn),當(dāng)且僅當(dāng)
或
……9分,解得
或
……10分。動(dòng)圓
與直線
沒有公共點(diǎn)當(dāng)且僅當(dāng)
,即
……12分。解
或
……13分,得
的取值范圍為
……14分.
……………………14分
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(14分)已知橢圓
的兩個(gè)焦點(diǎn)分別為F
1(-c,0),F(xiàn)
2(c
,0),(c>0),過點(diǎn)E
的直線與橢圓交于A、B兩點(diǎn),且F
1A//F
2B,|F
1A|=2|F
2B|,
(1)求離心率;
(
2)求直線AB的斜率;
(3)設(shè)點(diǎn)C與點(diǎn)A關(guān)于標(biāo)標(biāo)原點(diǎn)對稱,直線F
2B上有一點(diǎn)H(m,n)(m≠0)在△AF
1C的外接圓上,求
的值。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知拋物線
與雙曲線
有相同的焦點(diǎn)
,點(diǎn)
是兩曲線的一個(gè)交點(diǎn),
軸,若直線
是雙曲線的一條漸近線,則直線
的傾斜角所在的區(qū)間可能為
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題共14分)
已知橢圓
的焦點(diǎn)是
,
,點(diǎn)
在橢圓上且滿足
.
(Ⅰ)求橢圓
的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線
與橢圓
的交點(diǎn)為
,
.
(i)求使
的面積為
的點(diǎn)
的個(gè)數(shù);
(ii)設(shè)
為橢圓上任一點(diǎn),
為坐標(biāo)原點(diǎn),
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
過拋物線
的焦點(diǎn)作直線
交拋物線于
兩點(diǎn),若線段
中點(diǎn)的橫坐標(biāo)為
,則
( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
中心在原點(diǎn),對稱軸為坐標(biāo)軸的雙曲線C的兩條漸近線與圓都相切,則雙曲線C的離心率是 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
,通徑長為1,且焦點(diǎn)與短軸兩端點(diǎn)構(gòu)成等邊三角形,(1)求橢圓的方程;(2)過點(diǎn)Q(-1,0)的直線
l交橢圓于A,B兩點(diǎn),交直線
x=-4于點(diǎn)E,點(diǎn)Q分
所成比為λ,點(diǎn)E分
所成比為μ,求證λ+μ為定值,并計(jì)算出該定值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
方程
表示雙曲線,則
的取值范圍是 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知全集
U={1,2,3,4,5,6,7,8},
M ={1,3,5,7},
N ={5,6,7},則C
u(
MN)=( )
A.{5,7} | B.{2,4} | C.{2,4,8} | D.{1,3,5,6,7} |
查看答案和解析>>