(本小題共14分)
已知橢圓
的焦點(diǎn)是
,
,點(diǎn)
在橢圓上且滿(mǎn)足
.
(Ⅰ)求橢圓
的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線
與橢圓
的交點(diǎn)為
,
.
(i)求使
的面積為
的點(diǎn)
的個(gè)數(shù);
(ii)設(shè)
為橢圓上任一點(diǎn),
為坐標(biāo)原點(diǎn),
,求
的值.
(Ⅰ)
(Ⅱ)(i)符合條件的點(diǎn)
有2個(gè)(ii)
(Ⅰ)∵
>
∴點(diǎn)
滿(mǎn)足的曲線
的方程為橢圓
∵
∴
∴橢圓
的標(biāo)準(zhǔn)方程為
. …………4分
(Ⅱ)(i)∵ 直線
與橢圓
的交點(diǎn)為
,
∴
,
若
∴
∵原點(diǎn)
到直線
的距離是
∴在直線
的右側(cè)有兩個(gè)符合條件的
點(diǎn)
設(shè)直線
與橢圓相切,則
有且只有一個(gè)交點(diǎn)
∴
有且只有一個(gè)解
由
解得
(設(shè)負(fù))
此時(shí),
與
間距離為
∴在直線
的左側(cè)不存在符合條件的
點(diǎn)
∴符合條件的點(diǎn)
有2個(gè). ………………10分
(ii)設(shè)
,則
滿(mǎn)足方程:
∵
∴
即:
,從而有
∴
. ……………14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
已知圓的方程
,過(guò)
作直線
與圓交于點(diǎn)
,且
關(guān)于直線
對(duì)稱(chēng),則直線
的斜率等于
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
(本小題滿(mǎn)分14分)已知橢圓
:
的離心率為
,過(guò)坐標(biāo)原點(diǎn)
且斜率為
的直線
與
相交于
、
,
.
⑴求
、
的值;
⑵若動(dòng)圓
與橢圓
和直線
都沒(méi)有公共點(diǎn),試求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
(本小題滿(mǎn)分12分)
已知A、B分別為曲線C:
與
x軸的左右兩個(gè)交點(diǎn),直線
l過(guò)點(diǎn)B且
x軸垂直,M為
l上的一點(diǎn),連結(jié)AM交曲線C于點(diǎn)T。
(I)當(dāng)
,求點(diǎn)T坐標(biāo);
(II)點(diǎn)M在x軸上方,若
的面積為2,當(dāng)
的面積的最大值為
時(shí),求曲線C的離心率
e的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
(本小題15分)已知拋物線
,過(guò)點(diǎn)
的直線
交拋物線
于
兩點(diǎn),且
.
(1)求拋物線
的方程;
(2)過(guò)點(diǎn)
作
軸的平行線與直線
相交于點(diǎn)
,若
是等腰三角形,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
(本小題滿(mǎn)分12分,(Ⅰ)小問(wèn)5分,(Ⅱ)小問(wèn)7分.)
如題(21)圖,M(-2,0)和N(2,0)是平面上的兩點(diǎn),動(dòng)點(diǎn)P滿(mǎn)足:
(Ⅰ)求點(diǎn)P的軌跡方程;
(Ⅱ)設(shè)d為點(diǎn)P到直線l:
的距離,若
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
已知雙曲線
的左
、右焦點(diǎn)為F
1、F
2,其一條漸近線為y=x,點(diǎn)P
在該雙曲線上,則
=( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
橢圓
的焦點(diǎn)為
,過(guò)F
2垂直于x軸的直線交橢圓于一點(diǎn)P,那么|PF
1|的值是
。
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
已知圓的方程是
,經(jīng)過(guò)圓上一點(diǎn)
的切線方程為
,類(lèi)比上述方法可以得到橢圓
類(lèi)似的性質(zhì)為_(kāi)_______。
查看答案和解析>>