4.在平面直角坐標(biāo)系中,橫、縱坐標(biāo)均為整數(shù)的點叫做格點,若函數(shù)圖象恰好經(jīng)過k個格點,則稱函數(shù)為k階格點函數(shù),給出下列四個函數(shù):
①y=sinx+1;
②y=cos(x+$\frac{π}{3}$);
③y=ex-1;
④y=(x+1)2
其中為一階格點函數(shù)的序號為①③(把你認(rèn)為正確的命題序號都填上)

分析 只要逐個判斷函數(shù)是否過格點,過幾個格點即可,①②用到正弦,余弦函數(shù)圖象,因為正余弦的值域都是[-1,1],只需判斷當(dāng)x=-1,0,1時,y有是否為整數(shù)即可,③可借助y=ex的圖象來判斷,因為底數(shù)是e,所以只有x=0時,y才可能為整數(shù),④用到二次函數(shù)圖象,只要x取整數(shù),y一定為整數(shù).

解答 解:對于y=sinx+1,只有x取整數(shù)0時,縱坐標(biāo)y才能取到整數(shù),是1,故①為一階格點函數(shù);
對于y=cos(x+$\frac{π}{3}$),其圖象是由y=cosx的圖象向左平移$\frac{π}{3}$單位得到的,不經(jīng)過任何格點,故②不是格點函數(shù),
對于f(x)=ex-1,其圖象是函數(shù)y=ex圖象向下平移1個單位長度,只過(0,0)點一個格點,故③是一階格點函數(shù),
∵對于y=(x+1)2,不妨令x=-1,0,1,2,3,…,y=0,1,4,9,…故函數(shù)y=x2有無數(shù)個格點,排除④;
故答案為:①③.

點評 本題考查函數(shù)的圖象與性質(zhì),著重考查排除法,圖象法及函數(shù)單調(diào)性的性質(zhì),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知$\overrightarrow{a}$=(2,-3,1),$\overline$=(2,0,3),$\overrightarrow{c}$=(0,1,-2),則$\overrightarrow{a}$+4$\overrightarrow$-3$\overrightarrow{c}$等于( 。
A.(4,-4,6)B.(-6,-6,-5)C.(10,0,7)D.(10,-6,19)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖,在半徑為1的半圓內(nèi),放置一個邊長為$\frac{1}{2}$的正方形ABCD,向半圓內(nèi)任取一點,則該點落在正方形內(nèi)的槪率為( 。
A.$\frac{1}{π}$B.$\frac{1}{2π}$C.$\frac{2}{π}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,已知四棱錐P-ABCD的底面是菱形,∠BCD=60°,AB=PB=PD=2,PC=$\sqrt{3}$,AC與BD交于O點,E,H分別為PA,OC的中點.
(1)求證:PH⊥平面ABCD;
(2)求直線CE與平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)f(x)=sin(ωx+φ)(其中|φ|<$\frac{π}{2}$)的圖象如圖所示,則f(2016π)=( 。
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列結(jié)論正確的是( 。
A.當(dāng)x>0且x≠1時,lgx+$\frac{1}{lgx}$≥2B.x>0時,6-x-$\frac{4}{x}$的最大值是2
C.$\frac{{x}^{2}+5}{\sqrt{{x}^{2}+4}}$的最小值是2D.當(dāng)x∈(0,π)時,sinx+$\frac{4}{sinx}$≥4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x≥1}\\{y≥1}\\{x+y≤3}\end{array}\right.$,則$\frac{y}{x}$的最大值為( 。
A.0B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖,正方體ABCD-A1B1C1D1中,M,N分別為棱BC,CC1的中點,則異面直線AC和MN所成角的大小為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知向量$\overrightarrow{AB}$=(1,0,1),$\overrightarrow{AC}$=(0,-1,-1),則$\overrightarrow{AB}$與$\overrightarrow{AC}$的夾角為(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

同步練習(xí)冊答案