17.已知非零向量$\overrightarrow a,\overrightarrow b$滿足($\overrightarrow a$+$\overrightarrow b$)⊥($\overrightarrow a$-$\frac{3}{2}$$\overrightarrow b$),且|$\overrightarrow a}$|=$\sqrt{2}$|${\overrightarrow b}$|,則向量$\overrightarrow a$與$\overrightarrow b$的夾角為( 。
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

分析 根據(jù)向量垂直的等價條件建立方程關(guān)系,結(jié)合數(shù)量積的應(yīng)用進(jìn)行求解即可.

解答 解:∵($\overrightarrow a$+$\overrightarrow b$)⊥($\overrightarrow a$-$\frac{3}{2}$$\overrightarrow b$),且|$\overrightarrow a}$|=$\sqrt{2}$|${\overrightarrow b}$|,
∴($\overrightarrow a$+$\overrightarrow b$)•($\overrightarrow a$-$\frac{3}{2}$$\overrightarrow b$)=0,
即$\overrightarrow a$2-$\frac{3}{2}$$\overrightarrow b$2-$\frac{1}{2}$$\overrightarrow a$•$\overrightarrow b$=0,
即2${\overrightarrow b}$2-$\frac{3}{2}$$\overrightarrow b$2-$\frac{1}{2}$×$\sqrt{2}$|${\overrightarrow b}$|${\overrightarrow b}$|cos<$\overrightarrow a$,$\overrightarrow b$>=0,
則$\frac{1}{2}$-$\frac{1}{2}$×$\sqrt{2}$cos<$\overrightarrow a$,$\overrightarrow b$>=0,
則cos<$\overrightarrow a$,$\overrightarrow b$>=$\frac{\sqrt{2}}{2}$,
則<$\overrightarrow a$,$\overrightarrow b$>=$\frac{π}{4}$,
故選:A

點(diǎn)評 本題主要考查向量夾角的計(jì)算,根據(jù)向量垂直的等價條件以及向量數(shù)量積的應(yīng)用是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,a3=5,S5=3S3-2.
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn=2an,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在(x-$\frac{1}{{x}^{4}}$)10的展開式中,常數(shù)項(xiàng)為( 。
A.-90B.90C.-45D.45

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知等差數(shù)列{an}滿足a3=6,a4+a6=20.
(Ⅰ)求通項(xiàng)an
(II)設(shè)bn=$\frac{2}{{{a_n}{a_{n+1}}}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在△ABC中,角A,B,C所對的邊分別為a,b,c,若$\sqrt{3}$(acosB+bcosA)=2csinC,a+b=4,則△ABC的面積的最大值為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知直線l與橢圓$\frac{y^2}{a^2}+\frac{x^2}{b^2}$=1(a>b>0)相切于直角坐標(biāo)系的第一象限的點(diǎn)P(x0,y0),且直線l與x、y軸分別相交于點(diǎn)A、B,當(dāng)△AOB(O為坐標(biāo)原點(diǎn))的面積最小時,∠F1PF2=60°(F1、F2是橢圓的兩個焦點(diǎn)),若此時∠F1PF2的內(nèi)角平分線長度為$\frac{{\sqrt{3}}}{m}$a,則實(shí)數(shù)m的值是( 。
A.$\frac{5}{2}$B.$\frac{7}{3}$C.$\frac{{3\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的兩焦點(diǎn)F1、F2與短軸兩端點(diǎn)構(gòu)成四邊形為正方形,又點(diǎn)M是C上任意一點(diǎn),且△MF1F2的周長為2$\sqrt{2}$+2.
(1)求橢圓C的方程;
(2)若過點(diǎn)M(2,0)的直線與橢圓C相交于兩點(diǎn)A、B,設(shè)P為橢圓E上一點(diǎn),且滿足$\overrightarrow{OA}+\overrightarrow{OB}=t\overrightarrow{OP}$(O為坐標(biāo)原點(diǎn)),當(dāng)|AB|<$\frac{{2\sqrt{5}}}{3}$時,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.有3名男生,4名女生,選其中5人排成一行,共有2520種不同的排法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在△ABC中,角A、B、C的對邊分別為a、b、c,3(b2+c2)=3a2+2bc.
(1)若sinB=$\sqrt{2}$cosC,求tanC;
(2)若△ABC的面積S=5$\sqrt{2}$,求邊長a的最小值.

查看答案和解析>>

同步練習(xí)冊答案