通過平面直角坐標系中的平移變換與伸縮變換,可以把橢圓
(x+1)2
9
+
(y-1)2
4
=1變?yōu)橹行脑谠c的單位圓,求上述平移變換與伸縮變換,以及這兩種變換的合成的變換.
考點:橢圓的簡單性質(zhì)
專題:直線與圓,圓錐曲線的定義、性質(zhì)與方程
分析:運用平移變換和伸縮變換的特點,即可得到中心在原點的單位圓.
解答: 解:先由平移變換:
x′=x+1
y′=y-1
,即有
x2
9
+
y2
4
=1,
再由伸縮變換:
x″=
x′
3
y″=
y′
2
,即有x''2+y''2=1.
則兩種變換的合成變換:
x′=
x+1
3
y′=
y-1
2
點評:本題考查圖象變換的平移和伸縮變換,是兩種常見的變換,考查橢圓和圓的內(nèi)在聯(lián)系,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)集合M={平面內(nèi)的點(a,b)},N={f(x)|f(x)=acos3x+bsin3x},給出M到N的映射f:(a,b)→f(x)=acos3x+bsin3x.給出下列關(guān)于f:(-
2
,
2
)→f(x)的命題:
①f(x)=2sin(3x-
4
);
②其圖象可由y=2sin3x向左平移
π
4
個單位得到;
③點(
4
,0)是其圖象的一個對稱中心;
④在x∈[
12
,
4
]上為減函數(shù).
其中正確的命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,平面EAD⊥平面ABCD,△ADE是等邊三角形,ABCD是矩形,AD=2,AB=2
2
,F(xiàn)、G分別是AB、AD的中點.
(1)求證:CF⊥平面EFG;
(2)若P為線段CE上一點,且
CP
=
1
3
CE
,求DP與平面EFG所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

f′(x0)=0是可導函數(shù)y=f(x)在點x=x0處有極值的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、非充分非必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在[0,1]的函數(shù)f(x)同時滿足以下三條:①對任意的x∈[0,1],總有f(x)≥0;②f(1)=1;③當x1≥0,x2≥0,x1+x2≤1時,總有f(x1+x2)≥f(x1)+f(x2)成立.
(1)函數(shù)g(x)=2x-1在區(qū)間[0,1]上是否同時適合①②③?并說明理由;
(2)設(shè)m,n∈[0,1],且m>n,試比較f(m)與f(n)的大。
(3)假設(shè)存在a∈[0,1],使得f(a)∈[0,1]且f[f(a)]=a,求證:f(a)=a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

與雙曲線x2-
y2
4
=1有共同的漸近線,且過點(2,2)的雙曲線方程為( 。
A、
y2
3
-
x2
12
=1
B、
y2
2
-
x2
8
=1
C、
x2
2
-
y2
8
=1
D、
x2
3
-
y2
12
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)定點F1(0,-2),F(xiàn)2(0,2),動點P滿足|PF1|+|PF2|=m+
4
m
(m>0)則點P的軌跡為(  )
A、橢圓B、線段
C、圓D、橢圓或線段

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=-x3+ax2+b(a,b∈R).
(1)若a=1,函數(shù)f(x)的圖象能否總在直線y=b的下方?說明理由;
(2)若函數(shù)f(x)在[0,2]上是增函數(shù),x=2是方程f(x)=0的一個根,求證f(1)≤-2;
(3)若函數(shù)f(x)圖象上任意不同的兩點連線斜率小于1,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
AB
=(2,2,1),
CD
=(4,5,3)
,則平面ABC的單位法向量是
 

查看答案和解析>>

同步練習冊答案