7.已知隨機變量ξ服從正態(tài)分布N(1,σ2),若P(ξ≤2)=0.8,則P(0≤ξ≤2)=( 。
A.0.2B.0.4C.0.5D.0.6

分析 隨機變量ξ服從正態(tài)分布N(1,σ2),得到曲線關于x=1對稱,根據(jù)曲線的對稱性得到P(0≤ξ≤1)=0.3,從而得到所求.

解答 解:∵隨機變量ξ服從正態(tài)分布N(1,σ2),
∴正態(tài)曲線的對稱軸為μ=1,
∴P(ξ≥1)=P(ξ≤1)=0.5
又P(ξ≤2)=0.8
∴P(1≤ξ≤2)=0.3,
根據(jù)對稱性得P(0≤ξ≤1)=0.3
∴P(0≤ξ≤2)=0.6,
故選:D.

點評 本題考查正態(tài)分布曲線的特點及曲線所表示的意義,考查概率的性質(zhì),是一個基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

17.已知集合A={x|$\frac{x-5}{x+3}$≤0},B={y|y=$\sqrt{{{2015}^x}+1}$},則A∩(CRB)等于(  )
A.[-3,5]B.(-3,1)C.(-3,1]D.(-3,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.將5名實習教師分配到高一年級的4個班實習,每班至少1名,最多2名,則不同的分配方案有240種.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.如圖1,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AB=AD=$\frac{1}{2}$CD=1.現(xiàn)以AD為一邊向梯形外作正方形ADEF,然后沿邊AD將正方形ADEF翻折,使平面 ADEF與平面ABCD垂直,M為ED的中點,如圖2.

(1)求證:AM∥平面BEC;
(2)求證:BC⊥平面BDE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,矩形ABCD所在的平面和正方形ADD1A1所在的平面互相垂直,AD=AA1=1,AB=2,點E在棱AB上移動.
(1)當E為AB的中點時,求點E到平面ACD1的距離;
(2)當AE等于何值時,二面角D1-EC-D的大小為$\frac{π}{4}$?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)h(x)=$\frac{1}{3}{x^3}$-ax2+1,設f(x)=h'(x)-2alnx,g(x)=ln2x+2a2,其中x>0,a∈R.
(1)若f(x)在區(qū)間(2,+∞)上單調(diào)遞增,求實數(shù)a的取值范圍;
(2)記F(x)=f(x)+g(x),求證:F(x)≥$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知命題p:?x∈R,使得x2+4x+6<0,則下列說法正確的是(  )
A.¬p:?x∈R,使得x2+4x+6≥0,為真命題B.¬p:?x∈R,使得x2+4x+6≥0,為假命題
C.¬p:?x∈R,使得x2+4x+6≥0,為真命題D.¬p:?x∈R,使得x2+4x+6≥0,為假命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知雙曲線 C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的虛軸端點到一條漸近線的距離為$\frac{2}$,則雙曲線C漸近線方程為( 。
A.$y=\sqrt{3}x$B.y=2xC.$y=±\sqrt{2}x$D.$y=±\sqrt{3}x$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.以直角坐標系xoy的坐標原點O為極點,x軸的正半軸為極軸建立極坐標,曲線C1的極坐標方程是ρ=$\frac{6}{\sqrt{4+5si{n}^{2}θ}}$,曲線C2的參數(shù)方程是$\left\{\begin{array}{l}{x=2+2cosθ}\\{y=2+2sinθ}\\{\;}\end{array}\right.$(θ為參數(shù))
(1)寫出曲線C1,C2的普通方程;
(2)設曲線C1與y軸相交于A,B兩點,點P為曲線C2上任一點,求|PA|2+|PB|2的取值范圍.

查看答案和解析>>

同步練習冊答案