3.已知集合M={x|9x-4•3x+1+27=0},N={x|log2(x+1)+log2x=log26},則M、N的關(guān)系是( 。
A.M?NB.N?MC.M=ND.不確定

分析 求出集合M,N,即可判斷兩個(gè)集合的關(guān)系.

解答 解:集合M={x|9x-4•3x+1+27=0},可得9x-4•3x+1+27=0,
即(3x2-12•3x+27=0,解得3x=3,3x=9,解得x=1,x=2.
M={1,2}.
N={x|log2(x+1)+log2x=log26},
log2(x+1)+log2x=log26,
可得x(x+1)=6,x>0.
解得x=2.N={2}.
∴N?M.
故選:B.

點(diǎn)評(píng) 本題考查方程的解法,集合的關(guān)系的判斷,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知函數(shù)f(x)=2x-5,g(x)=4x-x2,給下列三個(gè)命題:
p1:若x∈R,則f(x)f(-x)的最大值為16;
p2:不等式f(x)<g(x)的解集為集合{x|-1<x<3}的真子集;
p3:當(dāng)a>0時(shí),若?x1,x2∈[a,a+2],f(x1)≥g(x2)恒成立,則a≥3,
那么,這三個(gè)命題中所有的真命題是( 。
A.p1,p2,p3B.p2,p3C.p1,p2D.p1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若x,y滿足$\left\{\begin{array}{l}{2x-y≤0}\\{x+y≤3}\\{x≥0}\end{array}\right.$,則x-y的最小值為( 。
A.0B.-1C.-3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知在等差數(shù)列{an}中,a2=4,a5+a6=15.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=2${\;}^{{a_n}-2}}$+n,求b1+b2+…+b10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.函數(shù)y=f(x)是奇函數(shù)且周期為3,f(-1)=1,則f(2017)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知直線y=2x+2,該直線的單位方向向量$\overrightarrow d$=±$({\frac{{\sqrt{5}}}{5},\frac{{2\sqrt{5}}}{5}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$是同一平面內(nèi)的三個(gè)向量,其中$\overrightarrow a$=(1,2).
(1)若|${\overrightarrow c}$|=2$\sqrt{5}$,且$\overrightarrow c$∥$\overrightarrow a$,求$\overrightarrow c$的坐標(biāo)
(2)若|${\overrightarrow b}$|=$\frac{{\sqrt{5}}}{2}$,且$\overrightarrow a$+2$\overrightarrow b$與$\overrightarrow a$-$\overrightarrow b$垂直,求$\overrightarrow a$與$\overrightarrow b$的夾角θ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.在2015年年底,某家庭打算把10萬(wàn)元定期存入銀行后,既不加進(jìn)存款也不取錢,每年到期利息連同本金自動(dòng)轉(zhuǎn)存,定期存款期限為10年.如果不考慮利息稅,且中國(guó)銀行人民幣定期存款的年利率為5%,則到期時(shí)的存款本息和是(  )
A.10×1.0510B.10×1.059C.200×(1.059-1)D.200×(1.0510-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知集合A={x||x|≤4,x∈R},B={x|x≥a},且A⊆B,則實(shí)數(shù)a的范圍為(-∞,-4].

查看答案和解析>>

同步練習(xí)冊(cè)答案