分析 (1)設(shè)$\overrightarrow c=({λ,2λ})$,利用向量平行得到坐標(biāo)的關(guān)系方程解之即可;
(2)利用向量垂直,數(shù)量積為0,得到$\overrightarrow a$與$\overrightarrow b$的數(shù)量積,再由數(shù)量積公式求夾角.
解答 解:(1)設(shè)∵$\overrightarrow c∥\overrightarrow a$,∴設(shè)$\overrightarrow c=({λ,2λ})$…(1分)
又∵$|{\overrightarrow c}|=2\sqrt{5}$,∴5λ2=20,即λ=±2…(2分)
$\overrightarrow c=({2,4})$或$\overrightarrow c=({-2,-4})$…(4分)
(2)$({\overrightarrow a+2\overrightarrow b})•({\overrightarrow a-\overrightarrow b})={\overrightarrow a^2}-2{\overrightarrow b^2}+\overrightarrow a•\overrightarrow b=0$…(5分)
∴$\overrightarrow a•\overrightarrow b=-\frac{5}{2}$…(6分)
∴$cosθ=\frac{\overrightarrow a•\overrightarrow b}{{|{\overrightarrow a}||{\overrightarrow b}|}}=\frac{{-\frac{5}{2}}}{{\sqrt{5}×\frac{{\sqrt{5}}}{2}}}=-1$…(7分)
∴θ=π…(8分)
點(diǎn)評 本題考查了平面向量平行和垂直的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | M?N | B. | N?M | C. | M=N | D. | 不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 接近0的實(shí)數(shù)可以構(gòu)成集合 | |
B. | R={實(shí)數(shù)集} | |
C. | 集合{y|y=x2-1}與集合{(x,y)|y=x2-1}是同一個集合 | |
D. | 參加2016年金磚國家峰會的所有國家可以構(gòu)成一個集合 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com