19.已知函數(shù)f(x)定義域為R,則命題p:“函數(shù)f(x)為偶函數(shù)”是命題q:“?x0∈R,f(x0)=f(-x0)”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 根據(jù)函數(shù)奇偶性的定義結(jié)合充分條件和必要條件的定義進行判斷即可.

解答 解:若函數(shù)f(x)為偶函數(shù),則?x∈R,f(-x)=f(x),則?x0∈R,f(x0)=f(-x0)成立,則充分性成立,
若f(x)=x2,-1≤x≤2,滿足f(-1)=f(1),但函數(shù)f(x)不是偶函數(shù),故必要性不成立,
即p是q的充分不必要條件,
故選:A.

點評 本題主要考查充分條件和必要條件的判斷,根據(jù)充分條件和必要條件的定義是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,正方體ABCD-A1B1C1D1的棱長為1,請在此正方體中取出四個頂點構成一個三棱錐,滿足三棱錐的四個面都是直角三角形,并求此三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.在一次水稻試驗田驗收活動中,將甲、乙兩種水稻隨機抽取各6株樣品,單株籽粒數(shù)制成如圖所示的莖葉圖:
(Ⅰ)一粒水稻約為0.1克,每畝水稻約為6萬株,估計甲種水稻畝產(chǎn)約為多少公斤?
(Ⅱ)分別從甲、乙兩種水稻樣品中任取一株,甲品種中選出的籽粒數(shù)記為a,乙品種中選出的籽粒數(shù)記為b,求a≥b的概率.
(Ⅲ)如從甲品種的6株中任選2株,記選到的超過187粒的株數(shù)為ξ,求ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知U=R,集合A={x|-1<x<1},B={x|x2-2x<0},則A∩(∁UB)=(-1,0].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.近兩年雙11網(wǎng)購受到廣大市民的熱捧.某網(wǎng)站為了答謝老顧客,在雙11當天零點整,每個金冠買家都可以免費抽取200元或者500元代金券一張,中獎率分別是$\frac{2}{3}$和$\frac{1}{3}$.每人限抽一次,100%中獎.小張,小王,小李,小趙四個金冠買家約定零點整抽獎.
(I)試求這4人中恰有1人抽到500元代金券的概率;
(Ⅱ)這4人中抽到200元、500元代金券的人數(shù)分別用X、Y表示,記ξ=XY,求隨機變量ξ的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.己知A(x1,0),B(x2,1)在函數(shù)f(x)=2sin(ωx+φ)(ω>0)的圖象上,|x1-x2|的最小值$\frac{π}{4}$,則ω=( 。
A.$\frac{3}{2}$B.$\frac{4}{3}$C.lD.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x-y+1≥0}\\{2x+y-7≤0}\\{2x+y-5≥0}\end{array}\right.$,則z=x-2y的最小值為-4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.數(shù)學活動小組由12名同學組成,現(xiàn)將這12名同學平均分成四組分別研究四個不同課題,且每組只研究一個課題,并要求每組選出一名組長,則不同的分配方案有( 。┓N.
A.$\frac{{C}_{12}^{3}{C}_{9}^{3}{C}_{6}^{3}}{{A}_{3}^{3}}$A${\;}_{4}^{4}$B.C${\;}_{12}^{3}$C${\;}_{9}^{3}$C${\;}_{6}^{3}$34
C.$\frac{{C}_{12}^{3}{C}_{9}^{3}{C}_{6}^{3}}{{A}_{4}^{4}}$43D.C${\;}_{12}^{3}$C${\;}_{9}^{3}$C${\;}_{6}^{3}$43

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.復數(shù)z1=2sin$θ-\sqrt{3}i$,z2=1+(2cosθ)i,i為虛數(shù)單位,θ∈[$\frac{π}{3},\frac{π}{2}$];
(1)若z1•z2是實數(shù),求cos2θ的值;
(2)若復數(shù)z1、z2對應的向量分別是$\overrightarrow{a}$、$\overrightarrow$,存在θ使等式($λ\overrightarrow{a}-\overrightarrow$)•($\overrightarrow{a}-λ\overrightarrow$)=0成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

同步練習冊答案