解下列不等式:
(1)x2+2x-3>0;    
(2)
3x-1
2-x
>0.
考點:其他不等式的解法
專題:不等式的解法及應用
分析:(1)由條件解一元二次不等式,求得它的解集.
(2)把要解的不等式等價轉化為(3x-1)(x-2)<0,從而求得它的解集.
解答: 解:(1)由已知得(x+3)(x-1)>0,求得x<-3或 x>1,即原不等式的解集為{x|x<-3或 x>1}.
(2)由已知得(3x-1)(2-x)>0,即(3x-1)(x-2)<0,求得
1
3
<x<2,即原不等式的解集為(
1
3
,2).
點評:本題主要考查一元二次不等式、分式不等式的解法,體現(xiàn)了等價轉化和分類討論的數(shù)學思想,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

過空間任意一點引三條直線,它們所確定的平面?zhèn)數(shù)是(  )
A、1B、2C、3D、1或3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若某一離散型隨機變量ξ的概率分布如下表,且E(ξ)=1.5,則a-b的值為
 

ξ0123
P0.1ab0.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

當x∈[a,b]時,函數(shù)f(x)=|x+1|+|3-x|的最大值為10,最小值4,則b-a的范圍是( 。
A、[2,8]
B、[3,7]
C、[3,10]
D、[2,10]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,O為坐標原點,點A(0,3),設圓C的半徑為1,圓心C(a,b)在直線l:y=2x-4上.
(1)若圓心也在直線y=-x+5上,求圓C的方程;
(2)在(1)的條件下,過點 A作圓C的切線,求切線的方程;
(3)若圓C上存在點M,使|MA|=|MO|,求圓心C的橫坐標a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列有關命題的敘述錯誤的是( 。
A、對于命題P:?x∈R,x2+x-1<0,則¬P為:?x∈R,x2+x-1≥0
B、若“P且Q”為假命題,則P,Q均為假命題
C、“x>2”是“x2-3x+2>0”的充分不必要條件
D、命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

隨機擲一枚質(zhì)地均勻的硬幣三次,至少有一次正面朝上的概率為( 。
A、
1
8
B、
3
8
C、
5
8
D、
7
8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,為測量山高MN,選擇A和另一座的山頂C為測量觀測點,從A點測得M點的仰角∠AMN=60°,C點的仰角∠CAB=45°以及∠MAC=75°;從C點測得∠MCA=60°,已知山高BC=1000m,則山高MN=
 
 m.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過點(1,2)且與直線x+y+1=0平行的直線的方程是
 

查看答案和解析>>

同步練習冊答案