6.命題“$?x>0,x+\frac{1}{x}≥2$”的否定是$?x>0,x+\frac{1}{x}<2$.

分析 根據(jù)已知中的原命題,結(jié)合全稱命題否定的方法,可得答案.

解答 解:命題“$?x>0,x+\frac{1}{x}≥2$”的否定是,$?x>0,x+\frac{1}{x}<2$,
故答案為:$?x>0,x+\frac{1}{x}<2$

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是全稱命題,命題的否定,難度不大,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若xlog32≥-1,則函數(shù)f(x)=4x-2x+1-3的最小值為(  )
A.-4B.-3C.$-\frac{32}{9}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知隨機(jī)變量ξ的分布列為(如表所示):設(shè)η=2ξ+1,則η的數(shù)學(xué)期望Eη的值是$\frac{2}{3}$.
ξ-101
P$\frac{1}{2}$$\frac{1}{6}$$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足an+Sn=2.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=n•an,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若實(shí)數(shù)a,b滿足$\frac{1}{a}+\frac{1}=\sqrt{ab}$,則ab的最小值為(  )
A.$\sqrt{2}$B.2C.$\frac{{\sqrt{2}}}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如圖,函數(shù)y=f(x)的圖象在點(diǎn)P處的切線方程是y=-x+5,則f(3)+f'(3)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.某校共有學(xué)生3000名,各年級(jí)男、女生人數(shù)如表所示,已知高一、高二年級(jí)共有男生1120人,現(xiàn)用分層抽樣的方法在全校抽取60名學(xué)生,則應(yīng)在高三年級(jí)抽取的學(xué)生人數(shù)為( 。
高一年級(jí)高二年級(jí)高三年級(jí)
女生456424y
男生644xz
A.16B.18C.20D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知點(diǎn)M是拋物線x2=4y上的一動(dòng)點(diǎn),F(xiàn)為拋物線的焦點(diǎn),A是圓C:(x-1)2+(y-4)2=1上一動(dòng)點(diǎn),則|MA|+|MF|的最小值為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若菱形ABCD的邊長(zhǎng)為2,則|$\overrightarrow{AB}$-$\overrightarrow{AD}$+$\overrightarrow{CD}$|=( 。
A.2$\sqrt{3}$B.4C.$\sqrt{3}$D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案