【題目】如圖,在平面直角坐標系xOy中,橢圓C:(a>b>0)經(jīng)過點(﹣2,0)和,橢圓C上三點A,M,B與原點O構(gòu)成一個平行四邊形AMBO.
(1)求橢圓C的方程;
(2)若點B是橢圓C左頂點,求點M的坐標;
(3)若A,M,B,O四點共圓,求直線AB的斜率.
【答案】(1)+y2=1;(2)M(-1,±);(3)±
【解析】
(1)將點和代入橢圓+=1求解即可.
(2)根據(jù)平行四邊形AMBO可知AM∥BO,且AM=BO=2.再設點M(x0,y0),則A(x0+2,y0),代入橢圓C求解即可.
(3) 因為A,M,B,O四點共圓,所以平行四邊形AMBO是矩形,且OA⊥OB,再聯(lián)立直線與橢圓的方程,結(jié)合韋達定理代入·=x1x2+y1y2=0求解即可.
(1)因為橢圓+=1(a>b>0)過點和,
所以a=2,+=1,解得b2=1,所以橢圓C的方程為+y2=1.
(2)因為B為左頂點,所以B (-2,0).
因為四邊形AMBO為平行四邊形,所以AM∥BO,且AM=BO=2.
設點M(x0,y0),則A(x0+2,y0).
因為點M,A在橢圓C上,所以解得所以M(-1,±).
(3)因為直線AB的斜率存在,所以設直線AB的方程為y=kx+m,A(x1,y1),B(x2,y2).
由消去y,得(4k2+1)x2+8kmx+4m2-4=0,
則有x1+x2=,x1x2=.
因為平行四邊形AMBO,所以=+=(x1+x2,y1+y2).
因為x1+x2=,所以y1+y2=k(x1+x2)+2m=k·+2m=,所以M(,).
因為點M在橢圓C上,所以將點M的坐標代入橢圓C的方程,化得4m2=4k2+1.①
因為A,M,B,O四點共圓,所以平行四邊形AMBO是矩形,且OA⊥OB,
所以·=x1x2+y1y2=0.
因為y1y2=(kx1+m)(kx1+m)=k2x1x2+km(x1+x2)+m2=,
所以x1x2+y1y2=+=0,化得5m2=4k2+4.②
由①②解得k2=,m2=3,此時△>0,因此k=±.
所以所求直線AB的斜率為±.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(其中是自然對數(shù)的底數(shù))).
(1)若是函數(shù)的極值點,求實數(shù)的值并討論的單調(diào)性;
(2)若,函數(shù)有兩個零點,,證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的焦距為2,過右焦點和短軸一個端點的直線的斜率為,為坐標原點.
(Ⅰ)求橢圓的方程;
(Ⅱ)設斜率為的直線與橢圓相交于兩點,記面積的最大值為,證明:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某調(diào)查機構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進行調(diào)查統(tǒng)計,得到整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖(如圖①)、90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖(如圖②),則下列結(jié)論中不一定正確的是( )
注:90后指1990年及以后出生,80后指1980~1989年之間出生,80前指1979年及以前出生.
A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上
B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的20%
C.互聯(lián)網(wǎng)行業(yè)中從事運營崗位的人數(shù)90后比80前多
D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了了解某高校全校學生的閱讀情況,隨機調(diào)查了200名學生每周閱讀時間(單位:小時)并繪制如圖所示的頻率分布直方圖.
(1)求這200名學生每周閱讀時間的樣本平均數(shù)和中位數(shù)(的值精確到0.01);
(2)為查找影響學生閱讀時間的因素,學校團委決定從每周閱讀時間為,的學生中抽取9名參加座談會.你認為9個名額應該怎么分配?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),且x=0是f(x)的極值點.
(1)求f(x)的最小值;
(2)是否存在實數(shù)b,使得關(guān)于x的不等式ex<bx+f(x)在(0,+∞)上恒成立?若存在,求出b的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】七巧板是中國古代勞動人民的發(fā)明,其歷史至少可以追溯到公元前一世紀,后清陸以湉《冷廬雜識》卷一中寫道“近又有七巧圖,其式五,其數(shù)七,其變化之式多至千余”在18世紀,七巧板流傳到了國外,被譽為“東方魔板”,至今英國劍橋大學的圖書館里還珍藏著一部《七巧新譜》.完整圖案為一正方形(如圖):五塊等腰直角三角形、一塊正方形和一塊平行四邊形,如果在此正方形中隨機取一點,那么此點取自陰影部分的概率是( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com