【題目】已知函數(shù).
(I)當(dāng)a=2時(shí),求曲線在點(diǎn)處的切線方程;
(II)設(shè)函數(shù),z.x.x.k討論的單調(diào)性并判斷有無極值,有極值時(shí)求出極值.
【答案】(Ⅰ);(Ⅱ)見解析。
【解析】試題分析:(Ⅰ)根據(jù)導(dǎo)數(shù)的幾何意義,求出切線的斜率,再用點(diǎn)斜式寫出切線方程;(Ⅱ)由,通過討論確定的單調(diào)性,再由單調(diào)性確定極值.
試題解析:(Ⅰ)由題意,
所以,當(dāng)時(shí), , ,
所以,
因此,曲線在點(diǎn)處的切線方程是,
即.
(Ⅱ)因?yàn)?/span>,
所以,
,
令,
則,
所以在上單調(diào)遞增,
因?yàn)?/span>,
所以,當(dāng)時(shí), ;當(dāng)時(shí), .
(1)當(dāng)時(shí), ,
當(dāng)時(shí), , , 單調(diào)遞增;
當(dāng)時(shí), , , 單調(diào)遞減;
當(dāng)時(shí), , , 單調(diào)遞增.
所以當(dāng)時(shí)取到極大值,極大值是,
當(dāng)時(shí)取到極小值,極小值是.
(2)當(dāng)時(shí), ,
當(dāng)時(shí), , 單調(diào)遞增;
所以在上單調(diào)遞增, 無極大值也無極小值.
(3)當(dāng)時(shí), ,
當(dāng)時(shí), , , 單調(diào)遞增;
當(dāng)時(shí), , , 單調(diào)遞減;
當(dāng)時(shí), , , 單調(diào)遞增.
所以當(dāng)時(shí)取到極大值,極大值是;
當(dāng)時(shí)取到極小值,極小值是.
綜上所述:
當(dāng)時(shí),函數(shù)在和上單調(diào)遞增,在上單調(diào)遞減,函數(shù)既有極大值,又有極小值,極大值是,極小值是;
當(dāng)時(shí),函數(shù)在上單調(diào)遞增,無極值;
當(dāng)時(shí),函數(shù)在和上單調(diào)遞增,在上單調(diào)遞減,函數(shù)既有極大值,又有極小值,極大值是,極小值是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某企業(yè)生成的產(chǎn)品生產(chǎn)線上隨機(jī)抽取件產(chǎn)品,測量這批產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測量結(jié)果得如圖所示的頻率分布直方圖:
(1)估計(jì)這批產(chǎn)品質(zhì)量指標(biāo)值的樣本平均和樣本方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值做代表):
(2)若該種產(chǎn)品的等級及相應(yīng)等級產(chǎn)品的利潤(每件)參照以下規(guī)則(其中為產(chǎn)品質(zhì)量指標(biāo)值):當(dāng)該產(chǎn)品定為一等品,企業(yè)可獲利元;當(dāng)且該產(chǎn)品定為二等品,企業(yè)可獲利元:當(dāng) 且.該產(chǎn)品定為三等品,企業(yè)將損失元;否則該產(chǎn)品定為不合格品,企業(yè)將損失元
(i)若測得一箱產(chǎn)品(件)的質(zhì)量指標(biāo)數(shù)據(jù)分別為:,求該箱產(chǎn)品的利潤;
(ii)設(shè)事件;事件 事件根據(jù)經(jīng)驗(yàn),對于該生產(chǎn)線上的產(chǎn)品,事件發(fā)生的概率分別為,根據(jù)以上信息,若產(chǎn)品預(yù)計(jì)年產(chǎn)量為件,試估計(jì)設(shè)產(chǎn)品年獲利情況(參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新能源汽車是我國汽車工業(yè)由大變強(qiáng)的一條必經(jīng)之路!國家對其給予政策上的扶持,己成為我國的戰(zhàn)略方針.近年來,我國新能源汽車制造蓬勃發(fā)展,某著名車企自主創(chuàng)新,研發(fā)了一款新能源汽車,經(jīng)過大數(shù)據(jù)分析獲得:在某種路面上,該品牌汽車的剎車距離(米)與其車速(千米/小時(shí))滿足下列關(guān)系:(,是常數(shù)).(行駛中的新能源汽車在剎車時(shí)由于慣性作用,要繼續(xù)往前滑行一段距離才能停下,這段距離叫做剎車距離).如圖是根據(jù)多次對該新能源汽車的實(shí)驗(yàn)數(shù)據(jù)繪制的剎車距離(米)與該車的車速(千米/小時(shí))的關(guān)系圖.該新能源汽車銷售公司為滿足市場需求,國慶期間在甲、乙兩地同時(shí)展銷該品牌的新能源汽車,在甲地的銷售利潤(單位:萬元)為,在乙地的銷售利潤(單位:萬元)為,其中為銷售量(單位:輛).
(1)若該公司在兩地共銷售20輛該品牌的新能源汽車,則能獲得的最大利潤是多少?
(2)如果要求剎車距離不超過25.2米,求該品牌新能源汽車行駛的最大速度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,底面為正方形的四棱錐中,平面,為棱上一動(dòng)點(diǎn),.
(1)當(dāng)為中點(diǎn)時(shí),求證:平面;
(2)當(dāng)平面時(shí),求的值;
(3)在(2)的條件下,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,三棱柱中,,、分別是、的中點(diǎn).
(1)求證:平面;
(2)若平面,,,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓: 經(jīng)過橢圓: 的左右焦點(diǎn),且與橢圓在第一象限的交點(diǎn)為,且三點(diǎn)共線,直線交橢圓于, 兩點(diǎn),且().
(1)求橢圓的方程;
(2)當(dāng)三角形的面積取得最大值時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在底面為正方形的四棱錐P-ABCD中,側(cè)棱PD⊥底面ABCD,PD=DC,點(diǎn)E是線段PC的中點(diǎn).
(1)求異面直線AP與BE所成角的大;
(2)若點(diǎn)F在線段PB上,使得二面角F-DE-B的正弦值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)的定義城為D,若滿足條件:存在,使在上的值城為(且),則稱為“k倍函數(shù)”,給出下列結(jié)論:①是“1倍函數(shù)”;②是“2倍函數(shù)”:③是“3倍函數(shù)”.其中正確的是( )
A.①②B.①③C.②③D.①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是橢圓上的點(diǎn),,是焦點(diǎn),離心率.
(1)求橢圓的方程;
(2)設(shè),是橢圓上的兩點(diǎn),且,(是定數(shù)),問線段的垂直平分線是否過定點(diǎn)?若過定點(diǎn),求出此定點(diǎn)的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com