【題目】已知圓 經(jīng)過橢圓 的左右焦點,且與橢圓在第一象限的交點為,且三點共線,直線交橢圓, 兩點,且).

(1)求橢圓的方程;

(2)當三角形的面積取得最大值時,求直線的方程.

【答案】(1;(2

【解析】試題分析:(1)求橢圓標準方程,由圓與軸的交點,可求得,利用三點共線,由是圓的直徑,從而,利用勾股定理可求得,從而由橢圓的定義可求得,于是得,橢圓方程即得;

(2)是確定的, ,說明,于是直線斜率已知,設(shè)出其方程為,代入橢圓方程,消去的二次方程,從而有分別是的橫坐標),由直線與圓錐曲線相交的弦長公式可求得弦長,再由點到直線距離公式求出到直線的距離,可計算出的面積,最后利用基本不等式可求得面積的最大值,及此時的值,得直線方程.

解析:

(1)

如圖,圓經(jīng)過橢圓的左、右焦點,,所以,解得,因為, 三點共線,所以為圓的直徑, 所以,因為,所以.所以,由,得.所以橢圓的方程為.

(2)由(1)得,點的坐標為,因為,所以直線的斜率為,設(shè)直線的方程為,聯(lián)立,得,設(shè),由,得.因為

所以, 又點到直線的距離為,.當且僅當,即時,等號成立,所以直線的方程為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).

(1)當時,討論函數(shù)的單調(diào)性;

(2)當時,求證:對任意的.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)橢圓的右焦點為,離心率為,過點且與軸垂直的直線被橢圓截得的線段長為.

(1)求橢圓的方程;

(2)若上存在兩點,橢圓上存在兩個點滿足: 三點共線, 三點共線且,求四邊形的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c.且 =(cos(A﹣B),﹣sin(A﹣B)), =(cosB,sinB),若 =﹣ . (Ⅰ)求sin A的值;
(Ⅱ)若a=4 ,b=5,求向量 方向上的投影.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)存在與直線平行的切線,求實數(shù)的取值范圍;

(2)設(shè),若有極大值點,求證: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著手機的發(fā)展,“微信”越來越成為人們交流的一種方式.某機構(gòu)對“使用微信交流”的態(tài)度進行調(diào)查,隨機抽取了50人,他們年齡的頻數(shù)分布及對“使用微信交流”贊成人數(shù)如下表.

年齡(單位:歲)

[15,25)

[25,35)

[35,45)

[45,55)

[55,65)

[65,75)

頻數(shù)

5

10

15

10

5

5

贊成人數(shù)

5

10

12

7

2

1

(Ⅰ)若以“年齡45歲為分界點”,由以上統(tǒng)計數(shù)據(jù)完成下面列聯(lián)表,并判斷是否有99%的把握認為“使用微信交流”的態(tài)度與人的年齡有關(guān);

年齡不低于45歲的人數(shù)

年齡低于45歲的人數(shù)

合計

贊成

不贊成

合計

(Ⅱ)若從年齡在[25,35)和[55,65)的被調(diào)查人中按照分層抽樣的方法選取6人進行追蹤調(diào)查,并給予其中3人“紅包”獎勵,求3人中至少有1人年齡在[55,65)的概率.

參考數(shù)據(jù)如下:

附臨界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

的觀測值: (其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為,且,又數(shù)列滿足: .

(1)求數(shù)列的通項公式

(2)為何值時,數(shù)列是等比數(shù)列?此時數(shù)列的前項和為,若存在,使m<成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過原點O的圓C,與x軸相交于點A(4,0),與y軸相交于點B(0,2).

(1)求圓C的標準方程;

(2)直線lB點與圓C相切,求直線l的方程,并化為一般式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近幾年電子商務(wù)蓬勃發(fā)展,在2017年的“年貨節(jié)”期間,一網(wǎng)絡(luò)購物平臺推銷了三種商品,某網(wǎng)購者決定搶購這三種商品,假設(shè)該名網(wǎng)購者都參與了三種商品的搶購,搶購成功與否相互獨立,且不重復搶購同一種商品,對三種商品的搶購成功的概率分別為 ,已知三件商品都被搶購成功的概率為,至少有一件商品被搶購成功的概率為 .

(1)求的值;

(2)若購物平臺準備對搶購成功的三件商品進行優(yōu)惠減免活動, 商品搶購成功減免百元, 商品搶購成功減免百元, 商品搶購成功減免百元,求該名網(wǎng)購者獲得減免的總金額(單位:百元)的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案