函數(shù)y=(6-x-x2)的單調(diào)遞增區(qū)間是( )
A.
B.
C.
D.
【答案】分析:先根據(jù)對數(shù)函數(shù)的真數(shù)大于零求定義域,再把復(fù)合函數(shù)分成二次函數(shù)和對數(shù)函數(shù),分別在定義域內(nèi)判斷兩個基本初等函數(shù)的單調(diào)性,再由“同增異減”求原函數(shù)的遞增區(qū)間.
解答:解:要使函數(shù)有意義,則6-x-x2>0,解得-3<x<2,故函數(shù)的定義域是(-3,2),
令t=-x2-x+6=-+,則函數(shù)t在(-3,-)上遞增,在[-,2)上遞減,
又因函數(shù)y=在定義域上單調(diào)遞減,
故由復(fù)合函數(shù)的單調(diào)性知y=(6-x-x2)的單調(diào)遞增區(qū)間是[-,2).
故選B.
點(diǎn)評:本題的考點(diǎn)是復(fù)合函數(shù)的單調(diào)性,對于對數(shù)函數(shù)需要先求出定義域,這也是容易出錯的地方;再把原函數(shù)分成幾個基本初等函數(shù)分別判斷單調(diào)性,再利用“同增異減”求原函數(shù)的單調(diào)性.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
lg(6-x)x-1
的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

17、已知函數(shù)y=f(x)和y=g(x)在[-2,2]的圖象如下所示,給出下列四個命題:
(1)方程f[g(x)]=0有且僅有6個根
(2)方程g[f(x)]=0有且僅有3個根
(3)方程f[f(x)]=0有且僅有5個根    
(4)方程g[g(x)]=0有且僅有4個根
其中正確命題是
(1)(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax+
2
x
+6
,其中a為實(shí)常數(shù).
(1)若f(x)>3x在(1,+∞)上恒成立,求a的取值范圍;
(2)已知a=
3
4
,P1,P2是函數(shù)f(x)圖象上兩點(diǎn),若在點(diǎn)P1,P2處的兩條切線相互平行,求這兩條切線間距離的最大值;
(3)設(shè)定義在區(qū)間D上的函數(shù)y=s(x)在點(diǎn)P(x0,y0)處的切線方程為l:y=t(x),當(dāng)x≠x0時,若
s(x)-t(x)
x-x0
>0
在D上恒成立,則稱點(diǎn)P為函數(shù)y=s(x)的“好點(diǎn)”.試問函數(shù)g(x)=x2f(x)是否存在“好點(diǎn)”.若存在,請求出所有“好點(diǎn)”坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:013

函數(shù)y=│6-x│x的圖象是

[  ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)y=
lg(6-x)
x-1
的定義域是______.

查看答案和解析>>

同步練習(xí)冊答案