17.下列函數(shù)中,在(0,+∞)上為減函數(shù)的是( 。
A.y=x+1B.$y={log_{\frac{1}{2}}}x$C.y=2xD.y=-(x-1)2

分析 根據(jù)題意,依次分析所給函數(shù)在區(qū)間(0,+∞)的單調(diào)性,即可得答案.

解答 解:根據(jù)題意,依次分析選項(xiàng):
對(duì)于A、函數(shù)y=x+1是一次函數(shù),在區(qū)間(0,+∞)上為增函數(shù),不符合題意;
對(duì)于B、函數(shù)y=$lo{g}_{\frac{1}{2}}x$為對(duì)數(shù)函數(shù),在區(qū)間(0,+∞)上為減函數(shù),符合題意;
對(duì)于C、函數(shù)y=2x為指數(shù)函數(shù),在區(qū)間(0,+∞)上為增函數(shù),不符合題意;
對(duì)于D、函數(shù)y=-(x-1)2為二次函數(shù),在區(qū)間(-∞,1)上為增函數(shù),區(qū)間(1,+∞)上為減函數(shù),不符合題意;
故選:B.

點(diǎn)評(píng) 本題考查函數(shù)單調(diào)性的判定,關(guān)鍵是掌握常見函數(shù)的單調(diào)性.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=ex-k-x,(x∈R)
(1)當(dāng)k=0時(shí),若函數(shù)f(x)≥m在R上恒成立,求實(shí)數(shù)m的取值范圍;
(2)試判斷當(dāng)k>1時(shí),函數(shù)f(x)在(k,2k)內(nèi)是否存在零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.?dāng)?shù)列{an}滿足a1=$\frac{4}{3},{a_{n+1}}-1={a_n}({a_n}-1),n∈{N^*}$且Sn=$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{a_n}$,則Sn的整數(shù)部分的所有可能值構(gòu)成的集合是{0,1,2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知f(x)是定義在R上的函數(shù),圖象關(guān)于y軸對(duì)稱,且在x∈[0,+∞)單調(diào)遞增.f(-2)=1,那么f(x)≤1的
解集是( 。
A.[-2,2]B.(-1,2)C.[-1,2]D.(-2,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.由下列各組命題構(gòu)成的新命題“p且q”為真命題的是( 。
A.p:4+4=9,q:7>4B.p:a∈{a,b,c},q:{a}⊆{a,b,c}
C.p:15是質(zhì)數(shù),q:8是12的約數(shù)D.p:2是偶數(shù),q:2不是質(zhì)數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知集合U=R,集合A={x|2x>1},集合B={x|logx2>0},則A∩(∁UB)等于( 。
A.{x|x>1}B.{x|0<x<1}C.{x|0<x≤1}D.{x|x≤1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知命題$p:\frac{1}{a}>\frac{1}{4}$,命題q:?x∈R,ax2+ax+1>0,則p成立是q成立的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.平面直角坐標(biāo)系中,點(diǎn)(3,1)和(t,4)分別在頂點(diǎn)為原點(diǎn)始邊為x軸的非負(fù)半軸的角α和α+45°的終邊上,則實(shí)數(shù)t的值為( 。
A.$\frac{1}{2}$B.2C.3D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知$\overrightarrow{a}$=(4,3),$\overrightarrow$=(-1,2).
(1)求|$\overrightarrow$|;
(2)求$\overrightarrow{a}$與$\overrightarrow$的夾角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案