【題目】在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為為參數(shù)).以原點為極點,x軸的非負半軸為極軸,建立極坐標(biāo)系.

1)求曲線C的極坐標(biāo)方程;

2)直線t為參數(shù))與曲線C交于A,B兩點,求最大時,直線l的直角坐標(biāo)方程.

【答案】1;(2.

【解析】

1)利用消去參數(shù),得到曲線的普通方程,再將,代入普通方程,即可求出結(jié)論;

2)由(1)得曲線表示圓,直線曲線C交于A,B兩點,最大值為圓的直徑,直線過圓心,即可求出直線的方程.

1)由曲線C的參數(shù)方程為參數(shù)),

可得曲線C的普通方程為,

因為

所以曲線C的極坐標(biāo)方程為,

.

2)因為直線t為參數(shù))表示的是過點的直線,

曲線C的普通方程為,

所以當(dāng)最大時,直線l經(jīng)過圓心.

直線l的斜率為,方程為,

所以直線l的直角坐標(biāo)方程為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,已知棱,兩兩垂直,長度分別為1,2,2.若),且向量夾角的余弦值為.

(1)求的值;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知O為坐標(biāo)原點,拋物線Cy2=8x上一點A到焦點F的距離為6,若點P為拋物線C準(zhǔn)線上的動點,則|OP|+|AP|的最小值為(  )

A. 4B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】謝賓斯基三角形是一種分形,由波蘭數(shù)學(xué)家謝賓斯基在1915年提出,先作一個正三角形.挖去一個“中心三角形”(即以原三角形各邊的中點為頂點的三角形),然后在剩下的小三角形中又挖去一個“中心三角形”,我們用白色代表挖去的面積,那么黑三角形為剩下的面積(我們稱黑三角形為謝賓斯基三角形).向圖中第5個大正三角形中隨機撒512粒大小均勻的細小顆粒物,則落在白色區(qū)域的細小顆粒物的數(shù)量約是(

A.256B.350C.162D.96

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過橢圓的四個頂點與坐標(biāo)軸垂直的四條直線圍成的矩形是第一象限內(nèi)的點)的面積為,且過橢圓的右焦點的傾斜角為的直線過點

1)求橢圓的標(biāo)準(zhǔn)方程

2)若射線與橢圓的交點分別為.當(dāng)它們的斜率之積為時,試問的面積是否為定值?若為定值,求出此定值;若不為定值,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是矩形,平面,,的中點,連接.

1)求證:

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知直三棱柱的底面為等腰直角三角形,點為線段的中點.

1)探究直線與平面的位置關(guān)系,并說明理由;

2)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于數(shù)列,把和叫做數(shù)列的前項泛和,記作為.已知數(shù)列的前項和為,且.

1)求數(shù)列的通項公式;

2)數(shù)列與數(shù)列的前項的泛和為,且恒成立,求實數(shù)的取值范圍;

3)從數(shù)列的前項中,任取項從小到大依次排列,得到數(shù)列、、、;再將余下的項從大到小依次排列,得到數(shù)列、.求數(shù)列與數(shù)列的前項的泛和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體ABCDA1B1C1D1中,ED1D的中點,ACBD的交點為O

1)求證:EO⊥平面AB1C;

2)在由正方體的頂點確定的平面中,是否存在與平面AB1C平行的平面?證明你的結(jié)論

查看答案和解析>>

同步練習(xí)冊答案