【題目】已知過橢圓的四個(gè)頂點(diǎn)與坐標(biāo)軸垂直的四條直線圍成的矩形(是第一象限內(nèi)的點(diǎn))的面積為,且過橢圓的右焦點(diǎn)的傾斜角為的直線過點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程
(2)若射線與橢圓的交點(diǎn)分別為.當(dāng)它們的斜率之積為時(shí),試問的面積是否為定值?若為定值,求出此定值;若不為定值,說明理由.
【答案】(1);(2)的面積為定值.
【解析】
(1)根據(jù)矩形面積、直線斜率和橢圓關(guān)系可構(gòu)造方程組求得,進(jìn)而得到橢圓標(biāo)準(zhǔn)方程;
(2)當(dāng)直線斜率存在時(shí),設(shè)方程為,與橢圓方程聯(lián)立得到韋達(dá)定理的形式,利用弦長公式求得,點(diǎn)到直線公式求得點(diǎn)到直線距離,進(jìn)而表示出;根據(jù),代入韋達(dá)定理形式化簡可得,代入中化簡得到;當(dāng)直線斜率不存在時(shí),可求得兩點(diǎn)坐標(biāo),進(jìn)而求得;綜合兩種情況可知為定值.
(1)由題意得:,,,.
直線的斜率,,
由得:,橢圓的標(biāo)準(zhǔn)方程為.
(2)的面積為定值,理由如下:
設(shè),,
①當(dāng)直線斜率存在時(shí),設(shè)方程為.
由得:,
則,即,
,,
,
又點(diǎn)到直線的距離,
.
,,
化簡可得:,滿足,
;
②當(dāng)直線斜率不存在時(shí),
且,可設(shè),,
則點(diǎn)的坐標(biāo)分別為,,
此時(shí);
綜上所述:的面積為定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一動(dòng)圓P與定圓外切,且與直線相切,記動(dòng)點(diǎn)P的軌跡為曲線E.
(1)求曲線E的方程;
(2)過點(diǎn)作直線l與曲線E交于不同的兩點(diǎn)B、C,設(shè)BC中點(diǎn)為Q,問:曲線E上是否存在一點(diǎn)A,使得恒成立?如果存在,求出點(diǎn)A的坐標(biāo);如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)若在定義域內(nèi)為單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三名乒乓球手進(jìn)行單打?qū)贡荣,每兩人比賽一場,共賽三場,每場比賽勝者?/span>3分,負(fù)者得0分,在每一場比賽中,甲勝乙的概率為,丙勝甲的概率為,乙勝丙的概率為,且各場比賽結(jié)果互不影響.若甲獲第一名且乙獲第三名的概率為.
(1)求的值;
(2)設(shè)在該次對抗比賽中,丙得分為,求的分布列、數(shù)學(xué)期望和方差.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列{an}的前n項(xiàng)和為Sn,a1,公比q>0,S1+a1,S3+a3,S2+a2成等差數(shù)列.
(1)求{an};
(2)設(shè)bn,求數(shù)列{cn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的上、下頂點(diǎn)分別為和,且其離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)點(diǎn)是直線上的一個(gè)動(dòng)點(diǎn),直線分別交橢圓于兩點(diǎn)(四點(diǎn)互不重合),請判斷直線是否恒過定點(diǎn).若過定點(diǎn),求出定點(diǎn)的坐標(biāo);否則,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,且、).設(shè)關(guān)于的不等式的解集為,且方程的兩實(shí)根為、.
(1)若,完成下列問題:
①求、的關(guān)系式;
②若、都是負(fù)整數(shù),求的解析式;
(2)若,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)一個(gè)盒子里裝有三張卡片,分別標(biāo)記有數(shù)字,,,這三張卡片除標(biāo)記的數(shù)字外完全相同。隨機(jī)有放回地抽取次,每次抽取張,將抽取的卡片上的數(shù)字依次記為,,.
(Ⅰ)求“抽取的卡片上的數(shù)字滿足”的概率;
(Ⅱ)求“抽取的卡片上的數(shù)字,,不完全相同”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的六面體中,四邊形ABCD是邊長為2的正方形,四邊形ABEF是梯形,,平面平面ABEF,BE=2AF=2,EF.
(1)在圖中作出平面ABCD與平面DEF的交線,并寫出作圖步驟,但不要求證明;
(2)求證:平面DEF;
(3)求平面ABEF與平面ECD所成銳二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com