設(shè)函數(shù)f(x)=|1-數(shù)學(xué)公式|(x>0),證明:當(dāng)0<a<b,且f(a)=f(b)時(shí),ab>1.

證明:方法一:由師意f(a)=f(b)?|1-|=|1-|?(1-2=(1-2?2ab=a+b≥2
故ab-≥0,即-1)≥0,故-1≥0,故ab>1.
方法二:不等式可以變?yōu)閒(x)=
對函數(shù)進(jìn)行分析知f(x)在(0,1]上是減函數(shù),在(1,+∞)上是增函數(shù).
由0<a<b且f(a)=f(b),得0<a<1<b且-1=1-,
+=2?a+b=2ab≥2
故ab-≥0,即-1)≥0,
-1≥0,即ab>1
分析:方法一:當(dāng)0<a<b,且f(a)=f(b)時(shí),
由f(a)=f(b)?|1-|=|1-|?(1-2=(1-2?2ab=a+b≥2得到關(guān)于ab的不等式,
解出不等式的解集,由解集確定ab>1.
方法二:去絕對值號將函數(shù)變?yōu)榉侄魏瘮?shù),即f(x)=
由函數(shù)的單調(diào)性及題設(shè)條件得0<a<1<b且-1=1-,
+=2,將其變形得到2ab=a+b≥2,解此不等式即可得到結(jié)論.
點(diǎn)評:本題考點(diǎn)是絕對值不等式的解法,考查利用絕對值不等式這一工具證明不等式,二者的結(jié)合點(diǎn)相當(dāng)隱蔽,本題需要對題設(shè)條件進(jìn)行轉(zhuǎn)化證明,請注意體會(huì)這里的技巧.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=|1-
1x
|(x>0),證明:當(dāng)0<a<b,且f(a)=f(b)時(shí),ab>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1-
1-x
x
(x<0)
a+x2(x≥0)
,要使f(x)在(-∞,+∞)內(nèi)連續(xù),則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1             (x≤
3
)
4-x2
(
3
<x<2)
0              (x≥2)
,則
2010
-1
f(x)dx的值為
π
3
+
2+
3
2
π
3
+
2+
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1-|x-1|,x<2
1
2
f(x-2),x≥2
,則函數(shù)F(x)=xf(x)-1的零點(diǎn)的個(gè)數(shù)為
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1,x>0
0,x=0
-1,x<0
,g(x)=x2f(x-1),則函數(shù)g(x)的遞減區(qū)間是( 。

查看答案和解析>>

同步練習(xí)冊答案