數(shù)學(xué)公式,函數(shù)f(x)=2ex+3x-a的零點(diǎn)所在的區(qū)間是


  1. A.
    (-2,-1)
  2. B.
    (-1,0)
  3. C.
    (0,1)
  4. D.
    (1,2)
C
分析:先利用定積分求出a,再利用函數(shù)零點(diǎn)的判定方法即可.
解答:∵==7,∴f(x)=2ex+3x-7.
∵f(0)=2e0+3×0-7=-5,f(1)=2e+3-7=2(e-2)>0.
∴f(0)f(1)<0,
∴函數(shù)f(x)=2ex+3x-a的零點(diǎn)所在的區(qū)間是(0,1).
故選C.
點(diǎn)評(píng):掌握函數(shù)零點(diǎn)的判定方法是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知及是實(shí)數(shù)集,e是自然對(duì)數(shù)的底數(shù),函數(shù)f(x)=
1+In(x+1)
x
的定義域?yàn)閧x|x>0,x∈R}
(I)解關(guān)于x的不等式f(x2+1)>
2
e-1

(II)若常數(shù)k是正整數(shù),當(dāng)x>0時(shí),f(x)>
k
x+1
恒成立,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•浙江二模)已知函數(shù)f(x)=
(x-a)2
lnx
(其中a為常數(shù)).
(Ⅰ)當(dāng)a=0時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ) 當(dāng)0<a<1時(shí),設(shè)函數(shù)f(x)的3個(gè)極值點(diǎn)為x1,x2,x3,且x1<x2<x3.證明:x1+x3
2
e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=ex-2x在區(qū)間[1,e]上的最大值為
ee-2e
ee-2e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2lnx與g(x)=a2x2+ax+1(a>0)
(1)設(shè)直線x=1與曲線y=f(x)和y=g(x)分別相交于點(diǎn)P,Q,且曲線y=f(x)和y=g(x)在點(diǎn)P,Q處的切線平行,求實(shí)數(shù)a的值;
(2)f′(x)為f(x)的導(dǎo)函數(shù),若對(duì)于任意的x∈(0,+∞),e
1
f′(x)
-mx≥0
恒成立,求實(shí)數(shù)m的最大值;
(3)在(2)的條件下且當(dāng)a取m最大值的
2
e
倍時(shí),當(dāng)x∈[1,e]時(shí),若函數(shù)h(x)=f(x)-kf′(x)的最小值恰為g(x)的最小值,求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln(x+2)-
x2
2a
,(a為常數(shù)且a≠0),若f(x)在x0處取得極值,且x0∉[e+2,e2+2],而f(x)≥0在[e+2,e2+2]上恒成立,則a的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案