【題目】已知函數(shù)是定義在R上的奇函數(shù),當(dāng)時,,給出下列命題:

①當(dāng)時,;

②函數(shù)2個零點;

的解集為

,,都有.

其中真命題的個數(shù)為(

A.4B.3C.2D.1

【答案】C

【解析】

對于①,利用函數(shù)是定義在R上的奇函數(shù)求解即可;對于②,由函數(shù)解析式及函數(shù)為奇函數(shù)求解即可;對于③,分別解當(dāng)時,當(dāng)時,即可得解;對于④,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,再求值域即可得解.

解:對于①,函數(shù)是定義在R上的奇函數(shù),當(dāng)時,,則當(dāng)時,,即①錯誤;

對于②,由題意可得,即函數(shù)3個零點,即②錯誤;

對于③,當(dāng)時,,令,解得,當(dāng)時,,令,解得,綜上可得的解集為,即③正確;

對于④,當(dāng)時,,,令,得,令,得,即函數(shù)為減函數(shù),在為增函數(shù),即函數(shù)在的最小值為,且時,,又,則,由函數(shù)為奇函數(shù)可得當(dāng)時,,又,即函數(shù)的值域為,即,都有,即④正確,

即真命題的個數(shù)為2,

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓)過點.

1)求橢圓的方程;

2)設(shè)過橢圓的右焦點,且傾斜角為的直線和橢圓交于、兩點,對于橢圓上任一點,若,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某客戶考察了一款熱銷的凈水器,使用壽命為十年,過濾由核心部件濾芯來實現(xiàn).在使用過程中,濾芯需要不定期更換,其中濾芯每個200.如圖是根據(jù)100臺該款凈水器在十年使用期內(nèi)更換的濾芯的件數(shù)制成的柱狀圖.(以100臺凈水器更換濾芯的頻率代替1臺凈水器更換濾芯發(fā)生的概率)

1)估計一臺凈水器在使用期內(nèi)更換濾芯的件數(shù)的眾數(shù)和中位數(shù).

2)估計一臺凈水器在使用期內(nèi)更換濾芯的件數(shù)大于10的概率.

3)已知上述100臺凈水器在購機的同時購買濾芯享受5折優(yōu)惠(使用過程中如需再購買無優(yōu)惠),假設(shè)每臺凈水器在購機的同時購買濾芯10個,這100臺凈水器在使用期內(nèi),更換濾芯的件數(shù)記為a,所需費用記為y,補全下表,估計這100臺凈水器在使用期內(nèi)購買濾芯所需總費用的平均數(shù).

100臺該款凈水器在試用期內(nèi)更換濾芯的件數(shù)a

9

10

11

12

頻數(shù)

費用y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,橢圓的離心率為,左、右頂點分別為、,線段的長為4.點在橢圓上且位于第一象限,過點,分別作,直線,交于點.

(1)若點的橫坐標(biāo)為-1,求點的坐標(biāo);

(2)直線與橢圓的另一交點為,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓右焦點,離心率為,過作兩條互相垂直的弦,設(shè)中點分別為

(1) 求橢圓的標(biāo)準(zhǔn)方程;

(2)求以為頂點的四邊形的面積的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義在R上的奇函數(shù),當(dāng)時,,給出下列命題:

①當(dāng)時,;

②函數(shù)2個零點;

的解集為;

,都有.

其中真命題的個數(shù)為(

A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,為等腰直角三角形,,DAC上一點,將沿BD折起,得到三棱錐,且使得在底面BCD的投影E在線段BC上,連接AE.

1)證明:;

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若曲線在點處的切線方程為,求的值;

2)當(dāng)時,求證:;

3)設(shè)函數(shù),其中為實常數(shù),試討論函數(shù)的零點個數(shù),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若對任意的實數(shù)kb,函數(shù)與直線總相切,則稱函數(shù)為“恒切函數(shù)”.

1)判斷函數(shù)是否為“恒切函數(shù)”;

2)若函數(shù)是“恒切函數(shù)”,求實數(shù)m,n滿足的關(guān)系式;

3)若函數(shù)是“恒切函數(shù)”,求證:.

查看答案和解析>>

同步練習(xí)冊答案