【題目】已知函數(shù)(其中為常數(shù),為自然對數(shù)的底數(shù),)
(1)若對任意,不等式恒成立,求實數(shù)的取值集合,
(2)已知正數(shù)滿足:存在,使不等式成立.
①求的取值集合;
②試比較與的大小,并證明你的結(jié)論.
【答案】(1);(2)①;②見解析.
【解析】
(1)求出函數(shù)的導(dǎo)數(shù),由題意知,可知,進而可求得實數(shù)的值;
(2)①由題意可知,存在使得不等式成立,構(gòu)造函數(shù),利用導(dǎo)數(shù)求出函數(shù)在區(qū)間上的最小值,即可得出實數(shù)的取值集合;
②構(gòu)造函數(shù),其中,利用導(dǎo)數(shù)判斷函數(shù)在區(qū)間上的單調(diào)性,可得出與的大小關(guān)系,進而可得出與的大小關(guān)系.
(1),則且,
由于對任意,不等式恒成立,即,.
當(dāng)時,對任意,,此時,函數(shù)在上為增函數(shù),無最小值,不合乎題意;
當(dāng)時,令,得.
若,則;若,則.
所以,函數(shù)在處取得極小值,亦即最小值,所以,,因此,;
(2)①由題意知,存在使得不等式,則,
構(gòu)造函數(shù),其中,則,
對任意的恒成立,
所以,函數(shù)在區(qū)間上單調(diào)遞增,則,.
因此,實數(shù)的取值集合為;
②構(gòu)造函數(shù),其中,則,
所以,函數(shù)在區(qū)間上單調(diào)遞減.
當(dāng)時,則;
當(dāng)時,則,即,即,則.
綜上所述,當(dāng)時,則;當(dāng)時,.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在定義域上是單調(diào)遞增函數(shù),求的取值范圍;
(2)若恒成立,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是兩條異面直線,直線與都垂直,則下列說法正確的是( )
A. 若平面,則
B. 若平面,則,
C. 存在平面,使得,,
D. 存在平面,使得,,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)g(x)=ex﹣ax2﹣ax,h(x)=ex﹣2x﹣lnx.其中e為自然對數(shù)的底數(shù).
(1)若f(x)=h(x)﹣g(x).
①討論f(x)的單調(diào)性;
②若函數(shù)f(x)有兩個不同的零點,求實數(shù)a的取值范圍.
(2)已知a>0,函數(shù)g(x)恰有兩個不同的極值點x1,x2,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三棱柱的主視圖和俯視圖如圖所示(圖中一格為單位正方形),D、D1分別為棱AC和A1C1的中點.
(1)求側(cè)(左)視圖的面積,并證明平面A1ACC1⊥平面B1BDD1
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在①,,②,,③,三個條件中任選一個補充在下面問題中,并加以解答.
已知的內(nèi)角A,B,C的對邊分別為a,b,c,若,______,求的面積S.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓上任一點到,的距離之和為4.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知點,設(shè)直線不經(jīng)過點,與交于,兩點,若直線的斜率與直線的斜率之和為,判斷直線是否過定點?若是,求出該定點的坐標(biāo);若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com