【題目】已知橢圓上任一點(diǎn),的距離之和為4.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)已知點(diǎn),設(shè)直線不經(jīng)過(guò)點(diǎn),交于,兩點(diǎn),若直線的斜率與直線的斜率之和為,判斷直線是否過(guò)定點(diǎn)?若是,求出該定點(diǎn)的坐標(biāo);若不是,請(qǐng)說(shuō)明理由.

【答案】1;(2)定點(diǎn),證明見(jiàn)解析

【解析】

(1)根據(jù)橢圓的定義可得,,a=2,b2=a2c2=2,即可求得橢圓方程;

(2)設(shè)直線l的方程,代入橢圓方程,根據(jù)韋達(dá)定理及直線的斜率公式化簡(jiǎn)可得m=2k4,再根據(jù)直線的點(diǎn)斜式方程,即可判斷直線l恒過(guò)定點(diǎn)(2,4).

(1)由橢圓定義知,,,

所以,

所以橢圓的標(biāo)準(zhǔn)方程為;

(2)直線l恒過(guò)定點(diǎn)(2,4),理由如下:

若直線斜率不存在,,不合題意.

故可設(shè)直線方程:,

聯(lián)立方程組,代入消元并整理得:,

,.

,將直線方程代入,

整理得:,

,

韋達(dá)定理代入上式化簡(jiǎn)得:,

因?yàn)?/span>不過(guò)點(diǎn),所以,

所以,,

所以直線方程為,,

所以直線過(guò)定點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(其中為常數(shù),為自然對(duì)數(shù)的底數(shù),)

1)若對(duì)任意,不等式恒成立,求實(shí)數(shù)的取值集合,

2)已知正數(shù)滿足:存在,使不等式成立.

①求的取值集合;

②試比較的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在三棱錐ABCD中,△ABD和△ACD是邊長(zhǎng)為2的等邊三角形,,O、E分別是BC、AC的中點(diǎn).

1)求證:OE∥平面ABD;

2)求證:平面ABC⊥平面BCD

3)求三棱錐ABCD的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓與雙曲線有相同的焦點(diǎn)坐標(biāo),且點(diǎn)在橢圓上.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)AB分別是橢圓的左、右頂點(diǎn),動(dòng)點(diǎn)M滿足,垂足為B,連接AM交橢圓于點(diǎn)P(異于A),則是否存在定點(diǎn)T,使得以線段MP為直徑的圓恒過(guò)直線BPMT的交點(diǎn)Q,若存在,求出點(diǎn)T的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某控制器中有一個(gè)易損部件,該部件由兩個(gè)電子元件按圖1方式連接而成.已知這兩個(gè)電子元件的使用壽命(單位:小時(shí))均服從正態(tài)分布,且各個(gè)元件能否正常工作相互獨(dú)立.(一個(gè)月按30天算)

1)求該部件的使用壽命達(dá)到一個(gè)月及以上的概率;

2)為了保證該控制器能穩(wěn)定工作,將若干個(gè)同樣的部件按圖2連接在一起組成集成塊.每一個(gè)部件是否能正常工作相互獨(dú)立.某開(kāi)發(fā)商準(zhǔn)備大批量生產(chǎn)該集成塊,在投入生產(chǎn)前,進(jìn)行了市場(chǎng)調(diào)查,結(jié)果如下表:

集成塊類(lèi)型

成本

銷(xiāo)售金額

其中是集成塊使用壽命達(dá)到一個(gè)月及以上的概率,為集成塊使用的部件個(gè)數(shù).報(bào)據(jù)市場(chǎng)調(diào)查,試分析集成塊使用的部件個(gè)數(shù)為多少時(shí),開(kāi)發(fā)商所得利潤(rùn)最大?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),為自然對(duì)數(shù)的底數(shù).

1)求函數(shù)的單調(diào)區(qū)間;

2)是否存在常數(shù),使恒成立?若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩個(gè)平面,相互垂直,是它們的交線,則下面結(jié)論正確的是(

A.垂直于平面的平面一定平行于平面

B.垂直于直線的平面一定平行于平面

C.垂直于平面的平面一定平行于直線

D.垂直于直線的平面一定與平面,都垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為,(t為參數(shù)),在以原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)中,曲線的極坐標(biāo)方程為.

1)將的方程化為極坐標(biāo)方程;

2)若曲線的公共點(diǎn)都在上,,求r.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓的左頂點(diǎn)為,右焦點(diǎn)為,為橢圓上兩點(diǎn),圓.

1)若軸,且滿足直線與圓相切,求圓的方程;

2)若圓的半徑為,點(diǎn)滿足,求直線被圓截得弦長(zhǎng)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案