給出下列命題:

①如果函數(shù)f(x)對任意的x1,x2∈R,且x1≠x2,都有(x1-x2)[f(x1)-f(x2)]<0,則函數(shù)f(x)在R上是減函數(shù);

②如果函數(shù)f(x)對任意的x∈R,都滿足f(x)=-f(2+x),那么函數(shù)f(x)是周期函數(shù);

③函數(shù)y=f(x)與函數(shù)y=f(x+1)-2的圖象一定不能重合;

④對于任意實數(shù)x,有f(-x)=-f(x),g(-x)=g(x),且x>0時,,則x<0時,

其中正確的命題是________.(把你認為正確命題的序號都填上)

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

10、如圖,平面中兩條直線l1和l2相交于點O,對于平面上任意一點M,若p、q分別是M到直線l1和l2的距離,則稱有序非負實數(shù)對(p,q)是點M的“距離坐標”.已知常數(shù)p≥0,q≥0,給出下列命題:
①若p=q=0,則“距離坐標”為(0,0)的點有且僅有1個;
②若pq=0,且p+q≠0,則“距離坐標”為(p,q)的點有且僅有2個;
③若pq≠0,則“距離坐標”為(p,q)的點有且僅有4個.
上述命題中,正確命題的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖是函數(shù)y=f(x)的導函數(shù)y=f′(x)的圖象,給出下列命題:
①-2是函數(shù)y=f(x)的極值點;
②1是函數(shù)y=f(x)的最小值點;
③y=f(x)在x=0處切線的斜率小于零;
④y=f(x)在區(qū)間(-2,2)上單調(diào)遞增.
則正確命題的序號是
①④
①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖展示了一個由區(qū)間(0,1)到實數(shù)集R的映射過程:區(qū)間(0,1)中的實數(shù)m對應數(shù)軸上的點M,如圖①;將線段AB圍成一個圓,使兩端點A、B恰好重合,如圖②;再將這個圓放在平面直角坐標系中,使其圓心在y軸上,點A的坐標為(0,1),在圖形變化過程中,圖①中線段AM的長度對應于圖③中的弧ADM的長度,如圖③.圖③中直線AM與x軸交于點N(n,0),則m的象就是n,記作f(m)=n.

給出下列命題:①f(
14
)=1;②f(x)是奇函數(shù);③f(x)在定義域上單調(diào)遞增,則所有真命題的序號是
.(填出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四面體OABC的三條棱OA、OB、OC兩兩垂直,OA=OB=2,OC=3,D為四面體OABC外一點.給出下列命題.
①不存在點D,使四面體ABCD有三個面是直角三角形
②不存在點D,使四面體ABCD是正三棱錐
③存在點D,使CD與AB垂直并且相等
④存在無數(shù)個點D,使點O在四面體ABCD的外接球面上
其中真命題的序號是
③④
③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•洛陽二模)給出下列命題:
①設(shè)向量
e1
e2
滿足|
e1
|=2,|
e2
|=1,
e1
,
e2
的夾角為
π
3
.若向量2t
e1
+7
e2
e1
+t
e2
的夾角為鈍角,則實數(shù)t的取值范圍是(-7,-
1
2
);
②已知一組正數(shù)x1,x2,x3,x4的方差為s2=
1
4
(x12+x22+x32+x42)-4,則x1+1,x2+1,x3+1,x4+1的平均數(shù)為1
③設(shè)a,b,c分別為△ABC的角A,B,C的對邊,則方程x2+2ax+b2=o與x2+2cx-b2=0有公共根的充要條件是A=90°;
④若f(n)表示n2+1(n∈N)的各位上的數(shù)字之和,如112+1=122,1+2+2=5,所以f(n)=5,記f1(n)=f(n),f2(n)=f[f1(n)],…fk+1(n)=f[fk(n)],k∈N,則f20(5)=11.
上面命題中,假命題的序號是
 (寫出所有假命題的序號).

查看答案和解析>>

同步練習冊答案