已知拋物線的焦點(diǎn)與橢圓
的右焦點(diǎn)重合,拋物線
的頂點(diǎn)在坐標(biāo)原點(diǎn),過(guò)點(diǎn)
的直線
與拋物線
交于A,B兩點(diǎn),
(1)寫出拋物線的標(biāo)準(zhǔn)方程 (2)求⊿ABO的面積最小值
(1)(2)16
解析試題分析:(1)橢圓的右焦點(diǎn)為
即為拋物線
的焦點(diǎn), 2分
得拋物線的標(biāo)準(zhǔn)方程為 5分
(2)當(dāng)直線AB的斜率不存在時(shí),直線方程為,此時(shí)
,⊿ABO的面積
=
7分
當(dāng)直線AB的斜率存在時(shí),設(shè)AB的方程為(
)聯(lián)立
消去,有
,
, 9分
設(shè)A()B(
)
有,
11分
∴=
綜上所述,面積最小值為16 13分
考點(diǎn):橢圓拋物線方程性質(zhì)及直線與圓錐曲線的位置關(guān)系
點(diǎn)評(píng):拋物線焦點(diǎn)為
,橢圓
焦點(diǎn)為
其中
當(dāng)直線與圓錐曲線相交時(shí),常聯(lián)立方程借助于方程根與系數(shù)的關(guān)系求解
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知直線與拋物線
相切于點(diǎn)
)且與
軸交于點(diǎn)
為坐標(biāo)原點(diǎn),定點(diǎn)B的坐標(biāo)為
.
(1)若動(dòng)點(diǎn)滿足
|
=
,求點(diǎn)
的軌跡
.
(2)若過(guò)點(diǎn)的直線
(斜率不等于零)與(1)中的軌跡
交于不同的兩點(diǎn)
,試求
與
面積之比的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知點(diǎn)是直角坐標(biāo)平面內(nèi)的動(dòng)點(diǎn),點(diǎn)
到直線
(
是正常數(shù))的距離為
,到點(diǎn)
的距離為
,且
1.
(1)求動(dòng)點(diǎn)P所在曲線C的方程;
(2)直線過(guò)點(diǎn)F且與曲線C交于不同兩點(diǎn)A、B,分別過(guò)A、B點(diǎn)作直線
的垂線,對(duì)應(yīng)的垂足分別為
,求證
=
;
(3)記,
,
(A、B、是(2)中的點(diǎn)),
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓E:的離心率為
,右焦點(diǎn)為F,且橢圓E上的點(diǎn)到點(diǎn)F距離的最小值為2.
(1)求橢圓E的方程;
(2)設(shè)橢圓E的左、右頂點(diǎn)分別為A,B,過(guò)點(diǎn)A的直線l與橢圓E及直線x=8分別相交于點(diǎn)M,N.
(。┊(dāng)過(guò)A,F(xiàn),N三點(diǎn)的圓半徑最小時(shí),求這個(gè)圓的方程;
(ⅱ)若,求△ABM的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
求中心在坐標(biāo)原點(diǎn),對(duì)稱軸為坐標(biāo)軸且經(jīng)過(guò)點(diǎn),一條漸近線的傾斜角為
的雙曲線方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,一水渠的橫斷面是拋物線形,O是拋物線的頂點(diǎn),口寬EF=4米,高3米建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求拋物線方程.現(xiàn)將水渠橫斷面改造成等腰梯形ABCD,要求高度不變,只挖土,不填土,求梯形ABCD的下底AB多大時(shí),所挖的土最少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,設(shè)是圓
上的動(dòng)點(diǎn),點(diǎn)
是
在
軸上投影,
為
上一點(diǎn),且
.當(dāng)
在圓上運(yùn)動(dòng)時(shí),點(diǎn)
的軌跡為曲線
. 過(guò)點(diǎn)
且傾斜角為
的直線
交曲線
于
兩點(diǎn).
(1)求曲線的方程;
(2)若點(diǎn)F是曲線的右焦點(diǎn)且
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓E:(
)離心率為
,上頂點(diǎn)M,右頂點(diǎn)N,直線MN與圓
相切,斜率為k的直線l經(jīng)過(guò)橢圓E在正半軸的焦點(diǎn)F,且交E于A、B不同兩點(diǎn).
(1)求E的方程;
(2)若點(diǎn)G(m,0)且| GA|=| GB|,,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C:其左、右焦點(diǎn)分別為F1、F2,點(diǎn)P是坐標(biāo)平面內(nèi)一點(diǎn),且|OP|=
(O為坐標(biāo)原點(diǎn))。
(1)求橢圓C的方程;
(2)過(guò)點(diǎn)l交橢圓于A、B兩點(diǎn),在y軸上是否存在定點(diǎn)M,使以AB為直徑的圓恒過(guò)這個(gè)點(diǎn):若存在,求出M的坐標(biāo);若不存在,說(shuō)明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com