已知點是直角坐標(biāo)平面內(nèi)的動點,點到直線(是正常數(shù))的距離為,到點的距離為,且1.
(1)求動點P所在曲線C的方程;
(2)直線過點F且與曲線C交于不同兩點A、B,分別過A、B點作直線的垂線,對應(yīng)的垂足分別為,求證=;
(3)記,
(A、B、是(2)中的點),,求的值.

(1)
(2)借助于聯(lián)立方程組,和韋達(dá)定理來借助于坐標(biāo)來證明垂直。
(3)

解析試題分析:解 (1) 設(shè)動點為,  
依據(jù)題意,有,化簡得
因此,動點P所在曲線C的方程是:.          4分
由題意可知,當(dāng)過點F的直線的斜率為0時,不合題意,
故可設(shè)直線,
聯(lián)立方程組,可化為,
則點的坐標(biāo)滿足
,可得點
于是,,
因此.                     9分
(3)依據(jù)(2)可算出,

. 
所以,即為所求.                                     13分
考點:直線與拋物線的位置關(guān)系
點評:主要是考查了直線與拋物線位置關(guān)系的研究,以及設(shè)而不求的思想運用,屬于中檔題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線,過軸上一點的直線與拋物線交于點兩點。
證明,存在唯一一點,使得為常數(shù),并確定點的坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線的頂點為原點,其焦點到直線:的距離為.設(shè)為直線上的點,過點作拋物線的兩條切線,其中為切點.
(Ⅰ) 求拋物線的方程;
(Ⅱ) 當(dāng)點為直線上的定點時,求直線的方程;
(Ⅲ) 當(dāng)點在直線上移動時,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的一個頂點為,焦點在軸上,中心在原點.若右焦點到直線的距離為3.    
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線與橢圓相交于不同的兩點.當(dāng)時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的右焦點在圓上,直線交橢圓于、兩點.
(1)求橢圓的方程;
(2)若(為坐標(biāo)原點),求的值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,橢圓C以過點A(1,),兩個焦點為(-1,0)(1,0)。
(1)求橢圓C的方程;
(2)E,F是橢圓C上的兩個動點,如果直線AE的斜率與AF的斜率互為相反數(shù),證明直線EF的斜率為定值,并求出這個定值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)直線是曲線的一條切線,
(Ⅰ)求切點坐標(biāo)及的值;
(Ⅱ)當(dāng)時,存在,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線的焦點與橢圓的右焦點重合,拋物線的頂點在坐標(biāo)原點,過點的直線與拋物線交于A,B兩點,
(1)寫出拋物線的標(biāo)準(zhǔn)方程 (2)求⊿ABO的面積最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的兩個焦點為,點在橢圓上.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知點,設(shè)點是橢圓上任一點,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案