【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,,n),用最小二乘法建立的回歸方程為,則下列結(jié)論中不正確的是( 。

A. 若該大學(xué)某女生身高為170cm,則可斷定其體重必為

B. 回歸直線過樣本點(diǎn)的中心

C. 若該大學(xué)某女生身高增加1cm,則其體重約增加

D. yx具有正的線性相關(guān)關(guān)系

【答案】A

【解析】

根據(jù)回歸方程為,,可知均正確,對(duì)于回歸方程只能進(jìn)行預(yù)測(cè),但不可斷定.

選項(xiàng):時(shí),

但這是預(yù)測(cè)值,不可斷定其體重為,故不正確;

選項(xiàng):回歸直線過樣本點(diǎn)的中心,故正確;

選項(xiàng):回歸方程為,根據(jù)系數(shù)可知,該大學(xué)某女生身高增加,則其體重約增加,故正確;

選項(xiàng):,所以具有正的線性相關(guān)關(guān)系,故正確;

本題正確選項(xiàng):

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在標(biāo)有的袋中有個(gè)紅球和個(gè)白球,這些球除顏色外完全相同.

Ⅰ)若從袋中依次取出個(gè)球,求在第一次取到紅球的條件下,后兩次均取到白球的概率;

Ⅱ)現(xiàn)從甲袋中取出個(gè)紅球, 個(gè)白球,裝入標(biāo)有的空袋.若從甲袋中任取球,乙袋中任取球,記取出的紅球的個(gè)數(shù)為,求的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電力公司在工程招標(biāo)中是根據(jù)技術(shù)、商務(wù)、報(bào)價(jià)三項(xiàng)評(píng)分標(biāo)準(zhǔn)進(jìn)行綜合評(píng)分的,按照綜合得分的高低進(jìn)行綜合排序,綜合排序高者中標(biāo)。分值權(quán)重表如下:

總分

技術(shù)

商務(wù)

報(bào)價(jià)

100%

50%

10%

40%

技術(shù)標(biāo)、商務(wù)標(biāo)基本都是由公司的技術(shù)、資質(zhì)、資信等實(shí)力來決定的。報(bào)價(jià)表則相對(duì)靈活,報(bào)價(jià)標(biāo)的評(píng)分方法是:基準(zhǔn)價(jià)的基準(zhǔn)分是68分,若報(bào)價(jià)每高于基準(zhǔn)價(jià)1%,則在基準(zhǔn)分的基礎(chǔ)上扣0.8分,最低得分48分;若報(bào)價(jià)每低于基準(zhǔn)價(jià)1%,則在基準(zhǔn)分的基礎(chǔ)上加0.8分,最高得分為80分。若報(bào)價(jià)低于基準(zhǔn)價(jià)15%以上(不含15%)每再低1%,在80分在基礎(chǔ)上扣0.8分。在某次招標(biāo)中,若基準(zhǔn)價(jià)為1000(萬元)。甲、乙兩公司綜合得分如下表:

公司

技術(shù)

商務(wù)

報(bào)價(jià)

80分

90分

70分

100分

甲公司報(bào)價(jià)為1100(萬元),乙公司的報(bào)價(jià)為800(萬元)則甲,乙公司的綜合得分,分別是

A. 73,75.4 B. 73,80 C. 74.6,76 D. 74.6 ,75.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,三點(diǎn)中恰有二點(diǎn)在橢圓上,且離心率為。

(1)求橢圓的方程;

(2)設(shè)為橢圓上任一點(diǎn), 為橢圓的左右頂點(diǎn), 中點(diǎn),求證:直線與直線它們的斜率之積為定值;

(3)若橢圓的右焦點(diǎn)為,過的直線與橢圓交于,求證:直線與直線斜率之和為定值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是圓O的直徑,C是圓O上一點(diǎn),AC=BC,且PA⊥平面ABCEAC的中點(diǎn),FPB的中點(diǎn),PA=,AB=2.求:

(Ⅰ)異面直線EFBC所成的角;

(Ⅱ)點(diǎn)A到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)部門隨機(jī)抽測(cè)生產(chǎn)某種零件的工人的日加工零件數(shù)(單位:件),其中A車間13人,B車間12人,獲得數(shù)據(jù)如下:

根據(jù)上述數(shù)據(jù)得到樣本的頻率分布表如下:

分組

頻數(shù)

頻率

[25,30]

3

0.12

30,35]

5

0.20

35,40]

8

0.32

4045]

n1

f1

45,50]

n2

f2

1)確定樣本頻率分布表中n1、n2、f1f2的值;

2)現(xiàn)從日加工零件數(shù)落在(40,45]的工人中隨機(jī)選取兩個(gè)人,求這兩個(gè)人中至少有一個(gè)來自B車間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(2)是否存在實(shí)數(shù),使得至少有一個(gè),使成立,若存在,求出實(shí)數(shù)的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】0,1,2,34這五個(gè)數(shù)字組成無重復(fù)數(shù)字的自然數(shù).

(Ⅰ)在組成的三位數(shù)中,求所有偶數(shù)的個(gè)數(shù);

(Ⅱ)在組成的三位數(shù)中,如果十位上的數(shù)字比百位上的數(shù)字和個(gè)位上的數(shù)字都小,則稱這個(gè)數(shù)為“凹數(shù)”,如301,423等都是“凹數(shù)”,試求“凹數(shù)”的個(gè)數(shù);

(Ⅲ)在組成的五位數(shù)中,求恰有一個(gè)偶數(shù)數(shù)字夾在兩個(gè)奇數(shù)數(shù)字之間的自然數(shù)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某興趣小組測(cè)量電視塔AE的高度H(單位m),如示意圖,垂直放置的標(biāo)桿BC高度h=4m,仰角∠ABE=α∠ADE=β

1)該小組已經(jīng)測(cè)得一組α、β的值,tanα=1.24,tanβ=1.20,,請(qǐng)據(jù)此算出H的值

2)該小組分析若干測(cè)得的數(shù)據(jù)后,發(fā)現(xiàn)適當(dāng)調(diào)整標(biāo)桿到電視塔的距離d(單位m),使αβ之差較大,可以提高測(cè)量精確度,若電視塔實(shí)際高度為125m,問d為多少時(shí),α-β最大

查看答案和解析>>

同步練習(xí)冊(cè)答案