15.已知數(shù)列{an}的各項均為正數(shù),a1=1,an+1=$\frac{{a}_{n}}{\sqrt{1+{{a}^{2}}_{n}}}$.
(1)求數(shù)列{an}的通項公式;
(2)令bn=$\frac{{a}_{n}•{a}_{n+1}}{{a}_{n}+{a}_{n+1}}$,求數(shù)列{bn}的前n項和.

分析 (1)由數(shù)列{an}的各項均為正數(shù),a1=1,an+1=$\frac{{a}_{n}}{\sqrt{1+{{a}^{2}}_{n}}}$,可得$\frac{1}{{a}_{n+1}^{2}}$-$\frac{1}{{a}_{n}^{2}}$=1.再利用等差數(shù)列的通項公式即可得出;
(2)bn=$\frac{{a}_{n}•{a}_{n+1}}{{a}_{n}+{a}_{n+1}}$=$\frac{1}{\sqrt{n}+\sqrt{n+1}}$=$\sqrt{n+1}$-$\sqrt{n}$,再利用“裂項求和”方法即可得出.

解答 解:(1)∵數(shù)列{an}的各項均為正數(shù),a1=1,an+1=$\frac{{a}_{n}}{\sqrt{1+{{a}^{2}}_{n}}}$,
∴$\frac{1}{{a}_{n+1}^{2}}$-$\frac{1}{{a}_{n}^{2}}$=1.
∴數(shù)列$\{\frac{1}{{a}_{n}^{2}}\}$是等差數(shù)列,公差為1,首項為1.
∴$\frac{1}{{a}_{n}^{2}}$=1+(n-1)=n,an>0.
∴an=$\frac{1}{\sqrt{n}}$.
(2)bn=$\frac{{a}_{n}•{a}_{n+1}}{{a}_{n}+{a}_{n+1}}$=$\frac{1}{\sqrt{n}+\sqrt{n+1}}$=$\sqrt{n+1}$-$\sqrt{n}$,
∴數(shù)列{bn}的前n項和=$(\sqrt{2}-1)$+$(\sqrt{3}-\sqrt{2})$+…+($\sqrt{n+1}$-$\sqrt{n}$)=$\sqrt{n+1}$-1.

點評 本題考查了等差數(shù)列的通項公式、“裂項求和”方法,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=log2(|x-1|+|x-4|-a),a∈R.
(1)當a=-2時,求f(x)≥3的解集;
(2)當函數(shù)f(x)的定義域為R時,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如果X~B(n,p),其0<p<1,那么當k由0增大到n時,P(X=k)是怎樣變化的?k取何值時,p(X=k)最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.設數(shù)列{an}是等差數(shù)列,Sn是它的前n項的和,若a1>0,S7=S4,問n為何值時,Sn最大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知函數(shù)$f(x)=sin(2x+\frac{π}{3})$(0≤x<π),且$f(α)=f(β)=\frac{1}{2}$(α≠β),則α+β=$\frac{7π}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.設函數(shù)f(x)的導函數(shù)為f′(x),對任意x∈R都有f′(x)>f(x)成立,則( 。
A.πf(1)>ef(lnπ)B.πf(1)=ef(lnπ)
C.πf(1)<ef(lnπ)D.πf(1)與ef(lnπ)的大小不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=3x+m(m為常數(shù)),則f(-log${\;}_{\sqrt{3}}$5)的值為( 。
A.24B.-24C.$\sqrt{5}$-1D.1-$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}+1,-1≤x≤0}\\{f(x-1)+1,x>0}\end{array}\right.$,將函數(shù)g(x)=f(x)-x-1的零點按從小到大的順序排列,構(gòu)成數(shù)列{an},則該數(shù)列的通項公式為(  )
A.an=n-1B.an=n-2C.an=n(n-1)D.an=2n-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知f(x)=x2+ax-lnx+1,g(x)=x2+1.
(1)若a=-1,判斷是否存在x0>0,使得f(x0)<0,并說明理由;
(2)設h(x)=f(x)-g(x),是否存在實數(shù)a,當x∈(0,e](e≈2.718,為自然常數(shù))時,函數(shù)h(x)的最小值為3.

查看答案和解析>>

同步練習冊答案