(本題滿(mǎn)分12分)在四棱錐P—ABCD中,底面ABCD是a的正方形,PA⊥平面ABCD,且PA=2AB
(Ⅰ)求證:平面PAC⊥平面PBD;
(Ⅱ)求二面角B—PC—D的余弦值.
解:(Ⅰ)證明:∵PA⊥平面ABCD ∴PA⊥BD
∵ABCD為正方形 ∴AC⊥BD
∴BD⊥平面PAC又BD在平面BPD內(nèi),
∴平面PAC⊥平面BPD .。。。。。。。。。。。。。。。。 6分
(Ⅱ)解法一:在平面BCP內(nèi)作BN⊥PC垂足為N,連DN,
∵Rt△PBC≌Rt△PDC,由BN⊥PC得DN⊥PC;
∴∠BND為二面角B—PC—D的平面角,
在△BND中,BN=DN=,BD=
∴cos∠BND =。。。。。。。。。。。。。。。 12分
解法二:以A為原點(diǎn),AB、AD、AP所在直線分別為x軸、y軸、z軸建立空間坐標(biāo)系如圖,
在平面BCP內(nèi)作BN⊥PC垂足為N連DN,
∵Rt△PBC≌Rt△PDC,由BN⊥PC得DN⊥PC;
∴∠BND為二面角B—PC—D的平面角
設(shè)
10分
12分
解法三:以A為原點(diǎn),AB、AD、AP所在直線分別為x軸、y軸、z軸建立如圖空間坐標(biāo)系,作AM⊥PB于M、AN⊥PD于N,易證AM⊥平面PBC,AN⊥平面PDC,
設(shè)
∵二面角B—PC—D的平面角與∠MAN互補(bǔ)
∴二面角B—PC—D的余弦值為 …………………………. 12分
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)如圖,、分別是正三棱柱的棱、的中點(diǎn),且棱,.
(Ⅰ)求證:平面;
(Ⅱ)在棱上是否存在一點(diǎn),使二面角的大小為,若存在,求的長(zhǎng);若不存在,說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐中,底面是矩形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點(diǎn),作EF⊥PB交PB于點(diǎn)F.
(1)證明:PA∥平面EDB;
(2)證明:PB⊥平面EFD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分)已知三棱柱的三視圖如圖所示,其中正視圖和側(cè)視圖均為矩形,俯視圖中,。
(I)在三棱柱中,求證:;
(II)在三棱柱中,若是底邊
的中點(diǎn),求證:平面;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)如圖,在三棱柱中,面,,,分別為,的中點(diǎn).
(1)求證:∥平面; (2)求證:平面;
(3)直線與平面所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(14分)(理)在長(zhǎng)方體ABCD—A1B1C1D1,中,AD=AA1=1,AB=2,點(diǎn)E在棱
AD上移動(dòng).
(1)證明:D1E⊥A1D;
(2)當(dāng)E為AB的中點(diǎn)時(shí),求點(diǎn)E到面ACD1的距離;
(3)AE等于何值時(shí),二面角D1—EC—D的大小為。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(13分)如圖,正方形ABCD所在平面與平面四邊形ABEF所在平面互相垂直,
是等腰直角三角形,AB=AE,F(xiàn)A=FE,∠AEF=45°
(1)求證:EF⊥平面BCE;
(2)設(shè)線段CD的中點(diǎn)為P,在直線AE上是否存在一點(diǎn)M,使得PM//平面BCE?若存在,請(qǐng)指出點(diǎn)M的位置,并證明你的結(jié)論;若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
已知平面α內(nèi)有一個(gè)點(diǎn)A(2,-1,2),α的一個(gè)法向量為n=(3,1,2),則下列點(diǎn)P中,在平面α內(nèi)的是( )
A.(1,-1,1) | B.(1,3,) |
C.(1,-3,) | D.(-1,3,-) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com