18.若二項(xiàng)式(x2+$\frac{a}{x}$)6的展開式的常數(shù)項(xiàng)為240,則正實(shí)數(shù)a=2.

分析 利用二項(xiàng)式定理的通項(xiàng)公式即可得出.

解答 解:二項(xiàng)式(x2+$\frac{a}{x}$)6的展開式的通項(xiàng)公式為:Tr+1=${∁}_{6}^{r}({x}^{2})^{6-r}(\frac{a}{x})^{r}$=ar${∁}_{6}^{r}$x12-3r,
令12-3r=0,解得r=4.
∴二項(xiàng)式(x2+$\frac{a}{x}$)6的展開式的常數(shù)項(xiàng)為${a}^{4}{∁}_{6}^{4}$=240,a>0.
解得a=2.
故答案為:2.

點(diǎn)評 本題考查了二項(xiàng)式定理的應(yīng)用,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)=lnx+$\frac{a}{x}$,其中a>0.
(1)求函數(shù)f(x)的極值:
(2)若函數(shù)h(x)=f(x)-1在區(qū)間[$\frac{1}{e}$,e]上有兩個不同的零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在1,2之間插入兩個數(shù),使之成為一個等差數(shù)列,則其公差為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.將函數(shù)y=sin3x的圖象向右平移$\frac{π}{12}$個單位所得函數(shù)的解析式為y=sin(3x-$\frac{π}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在平面直角坐標(biāo)系中,已知直線L參數(shù)方程為:$\left\{\begin{array}{l}{x=1+s}\\{y=1-s}\end{array}\right.$(s為參數(shù))和曲線C:y2=x相交于A、B兩點(diǎn),則|AB|=$3\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=cos2ωx+$\sqrt{3}$sinωxcosωx(ω>0)的周期為π.
(Ⅰ)當(dāng)x∈[0,$\frac{π}{2}$]時,求函數(shù)y=f(x)的值域;
(Ⅱ)已知△ABC的內(nèi)角A,B,C對應(yīng)的邊分別為a,b,c,若f($\frac{A}{2}$)=1,且a=4,b+c=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=4cosωx•sin(ωx+$\frac{π}{4}$)(ω>0)的最小正周期為π.
(1)求ω的值;
(2)討論f(x)在區(qū)間[0,$\frac{π}{2}$]上的單調(diào)性;
(3)當(dāng)x∈[0,$\frac{π}{2}$]時,關(guān)于x的方程f(x)=a 恰有兩個不同的解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.函數(shù)y=$\left\{\begin{array}{l}2x,0≤x≤4\\ 8,4<x≤8\\ 2(12-x),8<x≤12\end{array}$,填補(bǔ)方框內(nèi)的內(nèi)容完成函數(shù)的函數(shù)值的程序.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.一個正方體的表面涂上紅色,在它的長、寬、高上等距離地各切三刀,則大正方形被分割成若干個小正方體,從小正方體中隨機(jī)的取出一個,則這個小正方體各個面都沒有涂紅色的概率為( 。
A.$\frac{1}{8}$B.$\frac{3}{8}$C.$\frac{1}{27}$D.$\frac{1}{9}$

查看答案和解析>>

同步練習(xí)冊答案