分析 (Ⅰ)分別取BC1,BC中點(diǎn)D,G,連結(jié)ED,AG,推導(dǎo)出AG⊥面BCC1B1,從而ED⊥B1F,BE⊥B1F,由此能證明B1F⊥面BEC1.
(Ⅱ)以O(shè)為原點(diǎn),OE為x軸,OC為y軸,過O作平面ABC的垂線為z軸,建立空間直角坐標(biāo)系O-xyz,利用向量法能求出二面角A-BC1-E的余弦值.
解答 證明:(Ⅰ)分別取BC1,BC中點(diǎn)D,G,連結(jié)ED,AG,
∵ABC-A1B1C1是直三棱柱,且底面是正三角形,
∴AG⊥面BCC1B1,又∵E,D都是中點(diǎn),
由題意ED∥AG,∴ED⊥面BCC1B1,∴ED⊥B1F,
已知BE⊥B1F,BE∩ED=E,∴B1F⊥面BEC1; …(6分)
解:(Ⅱ)由(Ⅰ)知B1F⊥面BEC1,∴B1F⊥BC1,
由題意${S_{△{B_1}{C_1}F}}$∽${S_{△B{B_1}{C_1}}}$,
∴$\frac{{{C_1}F}}{{{C_1}{B_1}}}=\frac{{{C_1}{B_1}}}{{B{B_1}}}$,設(shè)BB1=a,則${C_1}F=\frac{a}{2}$,代入得$a=2\sqrt{2}$,
以O(shè)為原點(diǎn),OE為x軸,OC為y軸,過O作平面ABC的垂線為z軸,建立如圖坐標(biāo)系O-xyz,
得A(0,-1,0),$B({\sqrt{3},0,0})$,${B_1}({\sqrt{3},0,2\sqrt{2}})$,
${C_1}({0,1,2\sqrt{2}})$,$E({0,-1,\sqrt{2}})$,$F({0,1,\sqrt{2}})$,
則$\overrightarrow{{B_1}F}=({-\sqrt{3},1,-\sqrt{2}})$,$\overrightarrow{AB}=({\sqrt{3},1,0})$,$\overrightarrow{A{C_1}}=({0,2,2\sqrt{2}})$,
∵B1F⊥面BEC1,∴平面 BEC1的法向量為$\overrightarrow{m}$=$\overrightarrow{{B}_{1}F}$=(-$\sqrt{3}$,1,-$\sqrt{2}$),
設(shè)平面ABC1的法向量為$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AB}=0}\\{\overrightarrow{n}•\overrightarrow{A{C}_{1}}=0}\end{array}\right.$,得$\left\{{\begin{array}{l}{\sqrt{3}x+y=0}\\{2y+2\sqrt{2}z=0}\end{array}}\right.$,取x=1,得$\overrightarrow{n}$=(1,-$\sqrt{3}$,$\frac{\sqrt{6}}{2}$),
設(shè)二面角A-BC1-E的平面角為θ,
∴cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{3\sqrt{11}}{11}$,
∴二面角A-BC1-E的余弦值為$\frac{{3\sqrt{11}}}{11}$.…(12分)
點(diǎn)評 本題考查線面垂直的證明,考查二面角的余弦值的求法,是中檔題,解題時要認(rèn)真審題,注意向量法的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -0.2 | B. | -0.1 | C. | 0.1 | D. | 0.2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
x | 4 | 5 | 6 |
y | 8 | 6 | 7 |
A. | 1 | B. | $\frac{3}{2}$ | C. | $\frac{4}{5}$ | D. | $\frac{5}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\sqrt{2}$ | C. | 4 | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\frac{4\sqrt{2}}{3}$ | C. | $\frac{4\sqrt{3}}{3}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=x+1 | B. | y=x+2 | C. | y=2x+1 | D. | y=x-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com