16.定義在R上的奇函數(shù)$f(x)=\frac{{{2^x}-a}}{{{2^x}+1}}$,則a=1.

分析 根據(jù)函數(shù)奇偶性的性質(zhì),利用f(0)=0進行求解即可.

解答 解:∵$f(x)=\frac{{{2^x}-a}}{{{2^x}+1}}$是R上的奇函數(shù),
∴f(0)=0,
即f(0)=$\frac{1-a}{1+1}=\frac{1-a}{2}$=0,
得a=1,
故答案為:1.

點評 本題主要考查函數(shù)奇偶性的應(yīng)用,利用奇函數(shù)的性質(zhì)利用f(0)=0是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在△ABC中,已知a=5,則bcosC+ccosB=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.直線$f(x)=x-\frac{2}{x}$的圖象關(guān)于( 。
A.y軸對稱B.直線y=x對稱C.x軸對稱D.原點對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知集合A={x|3≤x<7},B={2<x<10},C={x|5-a<x<a}.
(1)求A∪B,(∁RA)∩B;
(2)若C⊆(A∪B),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知集合M={y|y=x2+2x-3,x∈R},集合N={x|(x+1)(x-5)≤0},則M∩N=( 。
A.{y|y≥-4}B.{y|-1≤y≤5}C.{y|-4≤y≤-1}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知μ(x)表示不小于x的最小整數(shù),例如μ(0.2)=1.
(1)當x∈($\frac{1}{2}$,2)時,求μ(x+log2x)的取值的集合;
(2)如函數(shù)f(x)=$\frac{μ(x)}{x}-a(x>0)$有且僅有2個零點,求實數(shù)a的取值范圍;
(3)設(shè)g(x)=μ(xμ(x)),g(x)在區(qū)間(0,n](n∈N+)上的值域為Ma,集合Ma中的元素個數(shù)為an,求證:${\;}_{n→+∞}^{lin}$$\frac{{a}_{n}}{{n}^{2}+1}=\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知b=2,B=$\frac{π}{6},C=\frac{π}{4}$,則c邊長為( 。
A.2B.$2\sqrt{2}$C.$\sqrt{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.根據(jù)某樣本數(shù)據(jù)得到回歸直線方程為y=1.5x+45,x∈{1,7,10,13,19},則$\overline{y}$=60.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.△ABC的三內(nèi)角A,B,C所對邊分別為a,b,c,若a2+b2-c2=ab,則角C的大小為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

查看答案和解析>>

同步練習(xí)冊答案