【題目】已知函數(shù)處的切線方程為

(1)求的解析式;

(2)若對任意的均有求實(shí)數(shù)k的取值范圍;

(3)設(shè)為兩個正數(shù),求證:

【答案】(1)(2)(3)見解析

【解析】試題分析:(1)根據(jù)導(dǎo)數(shù)的幾何意義,得到進(jìn)而求出解析式;(2)研究函數(shù)的單調(diào)性,使得函數(shù)的最小值大于0即可;(3當(dāng)時,和兩種情況;構(gòu)造函數(shù)證得,將式子化簡即可。

解析:

(1)由,

由題意: ,解得,所以

(2)令,

,令,

當(dāng)時, , 上單調(diào)遞減;

當(dāng)時, , 上單調(diào)遞增,

所以的最小值為

由題意知,解得,故實(shí)數(shù)的取值范圍是

(3)當(dāng)時,結(jié)論顯然成立,否則不妨設(shè),

設(shè)

當(dāng)時, , 上為減函數(shù);當(dāng)時, , 上為增函數(shù).從而當(dāng),∵,∴,即得,

化簡得,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,網(wǎng)格紙上小正方形的邊長為,粗實(shí)線畫出的是某幾何體的三視圖,該幾何體由一平面將一圓柱截去一部分所得,則該幾何體的體積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的離心率e= ,右頂點(diǎn)、上頂點(diǎn)分別為A,B,直線AB被圓O:x2+y2=1截得的弦長為
(1)求橢圓C的方程;
(2)設(shè)過點(diǎn)B且斜率為k的動直線l與橢圓C的另一個交點(diǎn)為M, =λ( ),若點(diǎn)N在圓O上,求正實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】利民中學(xué)為了了解該校高一年級學(xué)生的數(shù)學(xué)成績,從高一年級期中考試成績中抽出100名學(xué)生的成績,由成績得到如下的頻率分布直方圖.

根據(jù)以上頻率分布直方圖,回答下列問題:

(1)求這100名學(xué)生成績的及格率;(大于等于60分為及格)

(2)試比較這100名學(xué)生的平均成績和中位數(shù)的大小.(精確到0.1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

1)當(dāng)時,函數(shù)處的切線互相垂直,求的值;

2)若函數(shù)在定義域內(nèi)不單調(diào),求的取值范圍;

(3)是否存在正實(shí)數(shù),使得對任意正實(shí)數(shù)恒成立?若存在,求出滿足條件的實(shí)數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知長方體ABCD-A1B1C1D1中,AB=3,BC=2,CC1=5,E是棱CC1上不同于端點(diǎn)的點(diǎn),且

(1) 當(dāng)BEA1為鈍角時,求實(shí)數(shù)λ的取值范圍;

(2) 若λ,記二面角B1-A1B-E的的大小為θ,求|cosθ|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱柱ABC﹣A1B1C1的側(cè)棱垂直于底面,∠BAC=90°,AB= AC = AA1=2,M,N分別是A1B1,BC的中點(diǎn).

(1)證明:MN平面ACC1A1

(2)求二面角M﹣AN﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地棚戶區(qū)改造建筑平面示意圖如圖所示,經(jīng)規(guī)劃調(diào)研確定,棚改規(guī)劃建筑用地區(qū)域近似為圓面,該圓面的內(nèi)接四邊形是原棚戶區(qū)建筑用地,測量可知邊界萬米,萬米,萬米.

(1)請計算原棚戶區(qū)建筑用地的面積及的長;

(2)因地理?xiàng)l件的限制,邊界不能更改,而邊界可以調(diào)整,為了提高棚戶區(qū)建筑用地的利用率,請在圓弧上設(shè)計一點(diǎn),使得棚戶區(qū)改造后的新建筑用地的面積最大,并求出最大值.

查看答案和解析>>

同步練習(xí)冊答案