【題目】已知集合A{x|ax23x20}.

(1)A是單元素集合求集合A;

(2)A中至少有一個(gè)元素,a的取值范圍

【答案】1當(dāng) 時(shí), ,當(dāng)時(shí), ;(2

【解析】試題分析:將求集合中元素問題轉(zhuǎn)化為方程根問題.(1)集合A為單元素集合,說明方程有唯一根或兩個(gè)相等的實(shí)數(shù)根.要注意方程ax2-3x+2=0可能不是一元二次方程.(2)至少有一個(gè)元素,說明方程有一根或兩根.

試題解析:(1)因?yàn)榧?/span>A是方程ax2-3x+2=0的解集,則當(dāng)a=0時(shí),A={},符合題意;

當(dāng)a≠0時(shí),方程ax2-3x+2=0應(yīng)有兩個(gè)相等的實(shí)數(shù)根,

Δ=9-8a=0,解得a,此時(shí)A={},符合題意.

綜上所述,當(dāng)a=0時(shí),A={},當(dāng)a時(shí),A={}.

(2)由(1)可知,當(dāng)a=0時(shí),A={}符合題意;

當(dāng)a≠0時(shí),要使方程ax2-3x+2=0有實(shí)數(shù)根,

Δ=9-8a≥0,解得aa≠0.

綜上所述,若集合A中至少有一個(gè)元素,則a.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

I)求函數(shù)的單調(diào)區(qū)間;

II)若上恒成立,求實(shí)數(shù)的取值范圍;

III)在(II)的條件下,對任意的,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若恒成立,求實(shí)數(shù)的取值范圍;

(2)是否存在整數(shù),使得函數(shù)在區(qū)間上存在極小值,若存在,求出所有整數(shù)的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),令,其中是函數(shù)的導(dǎo)函數(shù).

(Ⅰ)當(dāng)時(shí),求的極值;

(Ⅱ)當(dāng)時(shí),若存在,使得恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)2008年至2014年中,每年的居民人均純收入y(單位:千元)的數(shù)據(jù)如下表:

年 份

2008

2009

2010

2011

2012

2013

2014

年份代號t

1

2

3

4

5

6

7

人均純收入y

2.7

3.6

3.3

4.6

5.4

5.7

6.2

對變量ty進(jìn)行相關(guān)性檢驗(yàn),得知ty之間具有線性相關(guān)關(guān)系.

(1)求y關(guān)于t的線性回歸方程;

(2)預(yù)測該地區(qū)2017年的居民人均純收入.

附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)在頸椎病患者越來越多,甚至大學(xué)生也出現(xiàn)了頸椎病,年輕人患頸椎病多與工作、生活方式有關(guān),某調(diào)查機(jī)構(gòu)為了了解大學(xué)生患有頸椎病是否與長期過度使用電子產(chǎn)品有關(guān),在遂寧市中心醫(yī)院隨機(jī)的對入院的50名大學(xué)生進(jìn)行了問卷調(diào)查,得到了如下的4×4列聯(lián)表:

未過度使用

過度使用

合計(jì)

未患頸椎病

15

5

20

患頸椎病

10

20

30

合計(jì)

25

25

50

(1)是否有99.5%的把握認(rèn)為大學(xué)生患頸錐病與長期過度使用電子產(chǎn)品有關(guān)?

(2)已知在患有頸錐病的10名未過度使用電子產(chǎn)品的大學(xué)生中,有3名大學(xué)生又患有腸胃炎,現(xiàn)在從上述的10名大學(xué)生中,抽取3名大學(xué)生進(jìn)行其他方面的排查,記選出患腸胃炎的學(xué)生人數(shù)為,求的分布列及數(shù)學(xué)期望.

參考數(shù)據(jù)與公式:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為調(diào)查大學(xué)生這個(gè)微信用戶群體中每人擁有微信群的數(shù)量,現(xiàn)從武漢市大學(xué)生中隨機(jī)抽取100位同學(xué)進(jìn)行了抽樣調(diào)查,結(jié)果如下:

微信群數(shù)量

頻數(shù)

頻率

0至5個(gè)

0

0

6至10個(gè)

30

0.3

11至15個(gè)

30

0.3

16至20個(gè)

a

c

20個(gè)以上

5

b

合計(jì)

100

1

(Ⅰ)求a,b,c的值;

(Ⅱ)以這100個(gè)人的樣本數(shù)據(jù)估計(jì)武漢市的總體數(shù)據(jù)且以頻率估計(jì)概率,若從全市大學(xué)生(數(shù)量很大)中隨機(jī)抽取3人,記X表示抽到的是微信群個(gè)數(shù)超過15個(gè)的人數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2-2mx+4m2-6=0的兩不等根為α,β,試求(α-1)2+(β-1)2的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)a.

(1)f(0);

(2)探究f(x)的單調(diào)性,并證明你的結(jié)論;

(3)f(x)為奇函數(shù),求滿足f(ax)<f(2)x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案