3.函數(shù)f(x)=3$\sqrt{2}$cos(x+φ)+sinx,x∈R,φ∈(-$\frac{π}{2}$,$\frac{π}{2}$)的圖象過點(diǎn)($\frac{π}{2}$,4),則f(x)的最小值為-5.

分析 根據(jù)f($\frac{π}{2}$)=4求出φ的值,再化簡f(x),利用三角函數(shù)的圖象與性質(zhì)求出f(x)的最小值.

解答 解:根據(jù)題意,f($\frac{π}{2}$)=3$\sqrt{2}$cos($\frac{π}{2}$+φ)+sin$\frac{π}{2}$=-3$\sqrt{2}$sinφ+1=4,
∴sinφ=-$\frac{\sqrt{2}}{2}$,
又φ∈(-$\frac{π}{2}$,$\frac{π}{2}$),
∴φ=-$\frac{π}{4}$,
∴f(x)=3$\sqrt{2}$cos(x-$\frac{π}{4}$)+sinx=3cosx+4sinx=5sin(x+θ),
其中tanθ=$\frac{4}{3}$;
∴sin(x+θ)=-1時(shí),f(x)取得最小值-5.
故答案為:-5.

點(diǎn)評 本題考查了三角函數(shù)的圖象與性質(zhì)的應(yīng)用問題,也考查了三角恒等變換問題,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知y=f(x)是奇函數(shù),當(dāng)x∈(0,2)時(shí),f(x)=alnx-ax+1,當(dāng)x∈(-2,0)時(shí),函數(shù)f(x)的最小值為1,則a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知在△ABC中,B=120°,AB=2,A的角平分線AD=$\sqrt{6}$,則AC=2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.籃子里裝有3個(gè)紅球,4個(gè)白球和5個(gè)黑球,球除顏色外,形狀大小一致.某人從籃子中隨機(jī)取出兩個(gè)球,記事件A=“取出的兩個(gè)球顏色不同”,事件B=“取出一個(gè)紅球,一個(gè)白球”,則P(B|A)=(  )
A.$\frac{2}{11}$B.$\frac{12}{47}$C.$\frac{12}{19}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.定義在R上的奇函數(shù)f(x)滿足f(-1)=0,且當(dāng)x>0時(shí),f(x)>xf′(x),則下列關(guān)系式中成立的是(  )
A.4f($\frac{1}{2}$)>f(2)B.4f($\frac{1}{2}$)<f(2)C.f($\frac{1}{2}$)>4f(2)D.f($\frac{1}{2}$)f(2)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知扇形的周長為4,當(dāng)扇形的面積最大時(shí),扇形的圓心角α等于( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{2x-y+4≥0}\\{x+y-4≤0}\\{y≥0}\end{array}\right.$,則z=|x|-y的取值范圍是( 。
A.[-2,4]B.[-2,2]C.[-4,4]D.[-4,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知復(fù)數(shù)z滿足(1+2i)z=3+4i,則|$\overline{z}$|等于( 。
A.2B.5C.$\frac{\sqrt{5}}{5}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.12B.9C.6D.36

查看答案和解析>>

同步練習(xí)冊答案