【題目】已知

1)證明函數(shù)f ( x )的圖象關(guān)于軸對稱;

2)判斷上的單調(diào)性,并用定義加以證明;

3)當x1,2]時函數(shù)f (x )的最大值為,求此時a的值。

【答案】(1)證明見解析;(2)答案見解析;(3) ,或

【解析】試題分析:1)定義域為,證明,確定函數(shù)為偶函數(shù),從而證得函數(shù)的圖象關(guān)于軸對稱;(2)利用單調(diào)性的定義,設(shè),作差,化簡確定差的正負,從而證得函數(shù)的單調(diào)性;(3)根據(jù)(2)的結(jié)論,利用函數(shù)的單調(diào)性,即可得到函數(shù)的最大值,再根據(jù)函數(shù)的最大值為,列出等式,即可求得的值.

試題解析:1要證明函數(shù)的圖象關(guān)于軸對稱,只須證明函數(shù)是偶函數(shù)

,

∴函數(shù)是偶函數(shù),即函數(shù)的圖象關(guān)于軸對稱

2.證明:任取,因為

,

時,由0<,,則...;

<0;

時,由0<,x1+x2>0,則...; ;

所以,對于任意),f(x)上都為增函數(shù)。

3由(2)知上為增函數(shù),則當時,函數(shù)亦為增函數(shù);

由于函數(shù)的最大值為,則,,解得,或

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】”是“對任意的正數(shù), ”的( )

A. 充分不必要條件 B. 必要不充分條件 C. 充要條件 D. 既不充分也不必要條件

【答案】A

【解析】分析:根據(jù)基本不等式,我們可以判斷出”?“對任意的正數(shù)x,2x+≥1”對任意的正數(shù)x,2x+≥1”?“a=

真假,進而根據(jù)充要條件的定義,即可得到結(jié)論.

解答:解:當“a=時,由基本不等式可得:

對任意的正數(shù)x2x+≥1”一定成立,

“a=”?“對任意的正數(shù)x,2x+≥1”為真命題;

對任意的正數(shù)x,2x+≥1時,可得“a≥

對任意的正數(shù)x,2x+≥1”?“a=為假命題;

“a=對任意的正數(shù)x,2x+≥1充分不必要條件

故選A

型】單選題
結(jié)束】
9

【題目】如圖是一幾何體的平面展開圖,其中為正方形, , 分別為, 的中點,在此幾何體中,給出下面四個結(jié)論:①直線與直線異面;②直線與直線異面;③直線平面;④平面平面

其中一定正確的選項是( )

A. ①③ B. ②③ C. ②③④ D. ①③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,側(cè)棱底面,底面為長方形,且,的中點,作于點.

(1)證明:平面;

(2)若三棱錐的體積為,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高三年級實驗班與普通班共1000名學生,其中實驗班學生200人,普通班學生800人,現(xiàn)將高三一?荚嚁(shù)學成績制成如圖所示頻數(shù)分布直方圖,按成績依次分為5組,其中第一組([0, 30)),第二組([30, 60)),第三組([60, 90)),的頻數(shù)成等比數(shù)列,第一組與第五組([120, 150))的頻數(shù)相等,第二組與第四組([90, 120))的頻數(shù)相等。

(1)求第三組的頻率;

(2)已知實驗班學生成績在第五組,在第四組,剩下的都在第三組,試估計實驗班學生數(shù)學成績的平均分;

(3)在(2)的條件下,按分層抽樣的方法從第5組中抽取5人進行經(jīng)驗交流,再從這5人中隨機抽取3人在全校師生大會上作經(jīng)驗報告,求抽取的3人中恰有一個普通班學生的概率。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的一個頂點為A(0,-1),焦點在x軸上。若右焦點F到直線xy+2=0的距離為3。

(1)求橢圓的方程;

(2)設(shè)直線ykxm(k≠0)與橢圓相交于不同的兩點M、N。當|AM|=|AN|時,求m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,a,b,c分別為角A,B,C的對邊.若acosB=3,bcosA=l,且A﹣B=
(1)求邊c的長;
(2)求角B的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】四棱錐中,底面的菱形,側(cè)面為正三角形,其所在平面垂直于底面.

(1)若為線段的中點,求證:平面;

(2)若為邊的中點,能否在棱上找到一點,使平面平面?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知方程

)若已知方程表示橢圓,則的取值范圍為__________

)語句是語句方程表示雙曲線的_____________

A.充分不必要條件 B.必要不充分條件 C.充在條件 D.既不充分也不必要條件

)根據(jù)()的結(jié)論,以如果那么的形式寫出一個正確命題,記作命題,則

命題__________

)套用量詞命題的格式:, , ,改寫()中命題,

表述形式為:__________

)寫出()中命題的逆命題,記作命題,則

命題__________

)判斷()中命題真假,并陳述判斷理由.

命題為__________命題,因為__________

)若已知方程表示橢圓,則該橢圓兩個焦點的坐標分別為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關(guān)于函數(shù)f(x)4sin(2x), (x∈R)有下列命題:

①yf(x)是以為最小正周期的周期函數(shù);

② yf(x)可改寫為y4cos(2x);

③yf(x)的圖象關(guān)于(,0)對稱;

④ yf(x)的圖象關(guān)于直線x=-對稱;

其中正確的序號為 .

查看答案和解析>>

同步練習冊答案