給出四個命題:①存在實數(shù),使;②存在實數(shù),使;③是偶函數(shù);④是函數(shù)的一條對稱軸方程;⑤若是第一象限角,且,則。其中所有的正確命題的序號是___        _.

 

【答案】

③②

【解析】

試題分析:對于①,利用二倍角的正弦公式變形,可得sinα?cosα的最大值為 不成立

對于②,利用誘導(dǎo)公式化簡為y=-cosx,該函數(shù)是偶函數(shù);對于③,把代入,看y能否取得最值,若能取得最值,命題正確,否則,命題不正確;對于④舉反例取α= π,β=,α、β是第一象限的角,且α>β,但sinα<sinβ,∴命題④錯誤.加以說明.通過以上分析即可得到正確答案,故可知正確的命題序號為③②

考點:命題的真假判斷,三角函數(shù)的性質(zhì)

點評:本題考查了命題的真假判斷與應(yīng)用,考查了三角函數(shù)的被角公式、誘導(dǎo)公式及三角函數(shù)的性質(zhì),考查了舉反例法在判斷命題真假中的應(yīng)用,此題是基礎(chǔ)題.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出四個命題:
①存在一個△ABC,使得sinA+cosA=-1;
②△ABC中,A>B的充要條件為sinA>sinB;
③直線x=
π
8
是函數(shù)y=sin(2x+
4
)圖象的一條對稱軸;
④△ABC中,若sin2A=sin2B,則△ABC一定是等腰三角形.
則其中正確命題的序號為
②③
②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出四個命題:
①存在一個△ABC,使得sinA+cosA=-1;
②△ABC中,∠A>∠B的充要條件為sinA>sinB;
③直線x=
π
8
是函數(shù)y=sin(2x+
5
4
π)
圖象的一條對稱軸;
④若關(guān)于x方程9x+(a+4)•3x+4=0有解,則實數(shù)a的取值范圍為a≥0或a≤-8.
正確的個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出四個命題:①存在實數(shù),使;②存在實數(shù),使;③是偶函數(shù);④是函數(shù)的一條對稱軸方程;⑤若是第一象限角,且,則。其中所有的正確命題的序號是_____。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

給出四個命題:
①存在一個△ABC,使得sinA+cosA=-1;
②△ABC中,∠A>∠B的充要條件為sinA>sinB;
③直線x=
π
8
是函數(shù)y=sin(2x+
5
4
π)
圖象的一條對稱軸;
④若關(guān)于x方程9x+(a+4)•3x+4=0有解,則實數(shù)a的取值范圍為a≥0或a≤-8.
正確的個數(shù)為( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

同步練習(xí)冊答案