三棱錐S-ABC中,∠SBA=∠SCA=90°,△ABC是斜邊AB=a的等腰直角三角形,則以下結(jié)論中:
①異面直線SB與AC所成的角為90°;
②直線SB⊥平面ABC;
③面SBC⊥面SAC;
④點(diǎn)C到平面SAB的距離是數(shù)學(xué)公式
其中正確結(jié)論的序號(hào)是________.

①②③④
分析:由題目中的條件可以證得,三棱錐的一個(gè)側(cè)棱SB⊥平面ABC,面SBC⊥AC,由此易判斷得①②③④都是正確的
解答:由題意三棱錐S-ABC中,∠SBA=∠SCA=90°,知SB⊥BA,SC⊥CA,
又△ABC是斜邊AB=a的等腰直角三角形可得AC⊥BC,又BC∩SB=B,故有AC⊥面SBC,故有SB⊥AC,故①正確,
由此可以得到SB⊥平面ABC,故②正確,
再有AC?面SAC得面SBC⊥面SAC,故③正確,
△ABC是斜邊AB=a的等腰直角三角形,點(diǎn)C到平面SAB的距離即點(diǎn)C到斜邊AB的中點(diǎn)的距離,即,故④正確.
故答案為①②③④
點(diǎn)評(píng):本題考查了異面直線所成的角,線面垂直,面面垂直以及點(diǎn)到面的距離的求法,本題涉及到了立體幾何中多個(gè)重要位置關(guān)系與典型問題的求法,綜合性強(qiáng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖在三棱錐S-ABC中∠ACB=90°,SA⊥面ABC,AC=2,BC=
13
SB=
29

(1)證明SC⊥BC.
(2)求側(cè)面SBC與底面ABC所成二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在三棱錐S-ABC中,SC⊥平面ABC,點(diǎn)P、M分別是SC和SB的中點(diǎn),設(shè)PM=AC=1,∠ACB=90°,直線AM與直線SC所成的角為60°.
(1)求證:平面MAP⊥平面SAC.
(2)求二面角M-AC-B的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三棱錐S-ABC中,△ABC是邊長(zhǎng)為4的正三角形,平面SAC⊥平面ABC,SA=SC=2
3
,M,N分別為AB,SB的中點(diǎn).
(1)證明:AC⊥SB;
(2)求二面角N-CM-B的大小;
(3)求點(diǎn)B到平面CMN的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐S-ABC中,△ABC是邊長(zhǎng)為8的正三角形,SA=SC=2
7
,二面角S-AC-B的大小為60°
(1)求證:AC⊥SB;
(2)求三棱錐S-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐S-ABC中,平面SBC⊥平面ABC,SB=SC=AB=2,BC=2
2
,∠BAC=90°,O為BC中點(diǎn).
(Ⅰ)求點(diǎn)B到平面SAC的距離;
(Ⅱ)求二面角A-SC-B的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案