在正三棱柱ABC-A1B1C1中,AB=AA1,D、E分別是棱A1B1、AA1的中點(diǎn),點(diǎn)F在棱AB上,且.
(1)求證:EF∥平面BDC1;
(2)求證:平面.
證明見解析.
解析試題分析:(1)要證線面平行,就是要在平面內(nèi)找一條直線與直線平行,本題中容易看出就是要證明 ,而這個(gè)在四邊形中只要取中點(diǎn),可證明即得;(2)要證平面,根據(jù)線面垂直的判定定理,就是要證與平面內(nèi)的兩條相交直線垂直,觀察已知條件,正三棱柱的側(cè)面是正方形,因此有,下面還要找一條垂線,最好在,中找一條,在平面中,由平面幾何知識(shí)易得,又由正三棱柱的性質(zhì)可得平面,從而,因此有平面,即有,于是結(jié)論得證.
(1)證明:取的中點(diǎn)M,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/b9/7/d28py4.png" style="vertical-align:middle;" />,所以為的中點(diǎn),
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/66/2/1e9a93.png" style="vertical-align:middle;" />為的中點(diǎn),所以, 2分
在正三棱柱中,分別為的中點(diǎn),
所以,且,則四邊形A1DBM為平行四邊形,
所以,所以, 5分
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/54/c/unhai1.png" style="vertical-align:middle;" />平面,平面,所以,平面 7分
(2)連接,因?yàn)樵谡?img src="http://thumb.zyjl.cn/pic5/tikupic/95/2/skdkm.png" style="vertical-align:middle;" />中,為的中點(diǎn),
所以,,所以,在正三棱柱ABC-A1B1C1中,面,
所以,,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/96/f/uz2qx2.png" style="vertical-align:middle;" />,所以,四邊形為正方形,由分別為的中點(diǎn),所以,可證得,
所以,面,即, 11分
又因?yàn)樵谡叫?img src="http://thumb.zyjl.cn/pic5/tikupic/21/b/fjzcp.png" style="vertical-align:middle;" />中,,所以面, 14分
考點(diǎn):線面平行與線面垂直.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖,四棱錐中,⊥平面,∥,,分別為線段的中點(diǎn).
(1)求證:∥平面;
(2)求證:⊥平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖3,已知二面角的大小為,菱形在面內(nèi),兩點(diǎn)在棱上,,是的中點(diǎn),面,垂足為.
(1)證明:平面;
(2)求異面直線與所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐中,為上一點(diǎn),面面,四邊形為矩形 ,,.
(1)已知,且∥面,求的值;
(2)求證:面,并求點(diǎn)到面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐中,底面是邊長(zhǎng)為的正方形,側(cè)面
底面,且,、分別為、的中點(diǎn).
(1)求證:平面;
(2)求證:面平面;
(3)在線段上是否存在點(diǎn),使得二面角的余弦值為?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,空間中有一直角三角形,為直角,,,現(xiàn)以其中一直角邊為軸,按逆時(shí)針方向旋轉(zhuǎn)后,將點(diǎn)所在的位置記為,再按逆時(shí)針方向繼續(xù)旋轉(zhuǎn)后,點(diǎn)所在的位置記為.
(1)連接,取的中點(diǎn)為,求證:面面;
(2)求與平面所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,PA⊥平面ABC,點(diǎn)C在以AB為直徑的⊙O上,∠CBA=30°,PA=AB=2,點(diǎn)E為線段PB的中點(diǎn),點(diǎn)M在弧AB上,且OM∥AC.
(1)求證:平面MOE∥平面PAC.
(2)求證:平面PAC⊥平面PCB.
(3)設(shè)二面角M—BP—C的大小為θ,求cos θ的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com